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Fatty acids are involved inT cell biology both as nutrients important for energy production as
well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit
a range of immunomodulatory properties that progress through T cell mediated events,
although the molecular mechanisms of these actions have not yet been fully elucidated.
Some of these immune activities are linked to polyunsaturated fatty acid-induced alter-
ation of the composition of cellular membranes and the consequent changes in signaling
pathways linked to membrane raft-associated proteins. However, significant aspects of the
polyunsaturated fatty acid bioactivities are mediated through their transformation to spe-
cific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzy-
matic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes,
and endocannabinoids are produced by and/or act upon T leukocytes through cell surface
receptors and have been shown to alter T cell activation and differentiation, proliferation,
cytokine production, motility, and homing events. Detailed appreciation of the mode of
action of these lipids presents opportunities for the design and development of therapeutic
strategies aimed at regulating T cell function.

Keywords: T cells, polyunsaturated fatty acids, eicosanoids, prostaglandins, leukotrienes, cyclooxygenase,
lipoxygenase, endocannabinoids

INTRODUCTION
The regulation of energy metabolism is crucial to T cell-mediated
immunity including activation, proliferation, and differentiation
(1). Following recognition of antigen in the lymph nodes, naïve
T lymphocytes undergo massive clonal expansion and differenti-
ation, followed by a contraction or death phase, and the estab-
lishment and maintenance of immunological memory (2, 3).
Before undergoing division, T cells activate biosynthetic pathways
for the production of proteins, nucleic acids, lipids, carbohy-
drates, and other “building blocks” necessary for the generation
of new cells. Following this stage, the metabolic machinery of
T cells is reprogramed, switching from the β-oxidation of fatty
acids in naive T cells to the glycolytic pathways in activated
T cells (4–6).

Downstream of T cell receptor (TCR) signaling, phosphatidyli-
nositol 3′-kinase (PI3K) leads to the activation of the serine–
threonine kinase AKT, which promotes glucose metabolism by
stimulating the localization of the glucose transporter Glut1 to the
plasma membrane, and the activity of hexokinase and phospho-
fructokinase, two rate-limiting enzymes of the glycolytic pathway.
Increased glycolytic flux enables activated T cells to generate ATP
and, at the same time, efficiently utilize carbon sources in the form
of amino acids and lipids for the biosynthesis of proteins and
membranes necessary for the expansion phase that characterizes
the immune response (7–11). AKT also controls the activation
state of mammalian target of rapamycin (mTOR), a sensor of
nutritional and energetic status in cells that promotes protein
synthesis.

T cell activation also initiates distinct transcriptional pro-
grams, which determine their differentiation into functional sub-
sets depending on the context [cytokines,prostaglandins (PG),and
other extracellular signals] in which they were activated (12–14).
These subsets define the characteristics of the immune response.
Whereas CD8+ T cells differentiate into cytotoxic T lymphocytes
that kill infected host cells, CD4+ T lymphocytes differentiate into
either the Th1, Th2, or Th17 subset of helper T cells (effector T
cells) that mediate appropriate immune responses or into induced
regulatory T cells (iTreg cells) that suppress uncontrolled immune
responses (12). There is evidence that the cytokine milieu in which
T cells differentiate can influence their metabolic programing. A
comparison of activated T cells responding to related cytokines
IL-2 and IL-15 illustrates the differential regulation of T lympho-
cyte metabolism by distinct cytokine environments: IL-2 promotes
elevated glucose metabolism and glycolysis, while IL-15 does not
maintain this metabolic state and T cells responding to IL-15 are
smaller with reduced nutrient uptake and glycolysis (15, 16).

After clearance of the infection, most clonally expanded and
differentiated T cells undergo apoptosis (contraction phase). The
surviving antigen-specific T cells (memory T cells) are responsible
for enhanced immunity after re-exposure to the same pathogen.
Of these various T cell subsets, the iTreg cells and memory T cells
rely on lipid oxidation as a major source of energy, whereas cyto-
toxic T lymphocytes and effector T cells are characterized by high
glycolytic activity (17–19).

Further to oxidation for energy production, fatty acids are
involved in many other aspects of T cell biology. In particular,
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omega-3 polyunsaturated fatty acids (n-3 PUFA) are recognized
as modulators of inflammation and immunity mediating their
pleiotropic activity through regulation of gene expression, influ-
encing signaling cascades, and altering the composition of the
cellular membranes (20, 21). The latter has implications for the
structure and function of the membrane, as well as a direct impact
on the production of n-6 and n-3 PUFA-derived bioactive lipids
including PG, leukotrienes (LT), resolvins (Rv), protectins (PD),
endocannabinoids, and related congeners.

Although the immunomodulatory properties of PUFA have
been known for many years, the molecular mechanisms underly-
ing these properties are not fully understood. It has been shown
that n-3 PUFA suppress antigen presentation, T cell activation and
proliferation, and lower the expression of signature cytokines (21–
27). Disappointingly, early studies using daily supplementation
with foods rich in n-3 PUFA failed to show significant improve-
ment in organ transplantation rejection (28, 29). However, recent
reports indicate that administration of purified eicosapentaenoic
acid (EPA; 20:5n-3) induces the differentiation of regulatory T
cells through upregulation of peroxisome proliferator-activated
receptor γ (PPARγ), a ligand-activated nuclear receptor that reg-
ulates lipid and glucose metabolism, leading to increased allograft
survival (30, 31).

Following this direction, studies have explored the effect of
cellular incorporation of the main n-3 PUFA, EPA, and docosa-
hexaenoic acid (DHA; 22:6n-3). These fatty acids can alter the
composition and molecular organization of membrane rafts with a
consequent impact on the activity of raft-associated signaling pro-
teins and related events. Examples include recruitment and activa-
tion of PLCγ and F-actin, impairing mitochondrial translocation
necessary to maintain Ca+ signaling for NFκB and AP-1 activa-
tion and IL-2 secretion, and suppression of phosphatidylinositol-
dependent actin remodeling, all linked to reduced CT4+ T cell
activation [recently reviewed in Ref. (20)]. Importantly, many of
the PUFA mediated activities are conveyed through their metabo-
lites that tend to be produced and metabolized upon request, can
act near the site of their synthesis or transported via circulation
and in this way mediate systemic effects (autacoids). These fami-
lies of potent mediators are intimately involved in inflammation
and immunity, with pro- and/or anti-inflammatory, proliferative,
and chemoattractive activities (21).

Overall, these new findings suggest that a better understand-
ing of the molecular mechanism of action of PUFA may lead
to the development of effective therapeutics. In this article, we
will overview the current knowledge of the function and impact
of eicosanoids and related metabolites, as well as that of endo-
cannabinoids and their congeners on T cell function, and examine
potential applications in biomedical research.

PUFA-DERIVED LIPID MEDIATORS: BIOSYNTHESIS AND
METABOLISM
The cellular membrane serves as a pool of PUFA available for fur-
ther metabolism to various bioactive lipids. These potent autacoids
act as local hormones and are produced upon request following
the activation of signaling pathways or effect of environmental
and other stimuli. The arachidonic acid (AA; C20:4n-3)-derived
eicosanoids are some of the best known and studied bioactive

lipids. The term “eicosanoids” is used to describe the bioactive
derivatives of three fatty acids with 20-carbon acyl chains, namely:
AA, EPA, and dihomo-gamma linolenic (DGLA; 20:3n-6). These
metabolites, although mostly linked to inflammation, are also
involved in cell migration, proliferation, chemotaxis, and immune
reactions (32–34). Eicosanoids and related mediators derive from
the activities of cyclooxygenases (COX), lipoxygenases (LOX),
and cytochrome P450 (CYP) epoxygenases and mono-oxygenases
(Figures 1 and 2) [reviewed in Ref. (35)]. The term “endocannabi-
noids” refers to endogenous lipids ligands of the cannabinoid
receptors CB1 and CB2. These are also derivatives of AA, while
other PUFA ethanolamides are now recognized as members of
this family (36). Although endocannabinoids can be metabolized
by COX and LOX, their precursor phospholipids and metabolism
are different to eicosanoids (Figure 3).

CYCLOOXYGENASE-MEDIATED FORMATION OF PROSTANOIDS
The eicosanoid cascade starts with the activation of phospholi-
pases (PL), predominantly PLA2 but also PLD and diacylglycerol
(DAG) lipase that release AA and other PUFA from the cellular
membrane (35). The family of PLA2 comprises a large number
of enzymes with distinct characteristics in terms of their activa-
tion, cellular localization, and substrate specificity (37). There is
evidence for the presence of various PLA2 isoforms in primary T
cells and the Jurkat T cell line, including cPLA2, sPLA2, and iPLA2

(38–42). Inducible isoforms of PLC and DAG lipase have also been
identified in tumor and peripheral T lymphocytes (42, 43).

Free AA is then metabolized via the constitutive and inducible
COX isoforms (COX-1 and -2, respectively) to the unstable
endoperoxide PGH2 that is then transformed to PG, thrombox-
anes (TX), and prostacyclin (PGI2) via tissue specific terminal
prostaglandin synthases (Figure 1); these COX-derived mediators
belong to the family of eicosanoids and are collectively known as
prostanoids. Apart from AA, prostanoids are formed from the
other two 20-carbon containing PUFA, DGLA, and EPA, with
the resulting metabolites having different activities and being
considered less-inflammatory than the AA-derived ones (35, 44).

The exact profile of prostanoids is determined by the preva-
lence of specific synthases in the cell type or tissue of inter-
est. PGE2 is produced by prostaglandin E synthase (PGES) that
is found as membrane bound (mPGES-1 and -2) or cytosolic
(cPGES). mPGES-1 is an inducible isoform and is frequently
found co-expressed with COX-2 (45, 46). PGD2 is produced
by the hematopoietic-type (H-PGDS) or the lipocalin-type (L-
PGDS) synthases (47), while further non-enzymatic hydrolysis of
PGD2 gives rise to the anti-inflammatory cyclopentanone PGs
PGJ2 and 15d-PGJ2 (48, 49). PGF2α is produced either directly
from PGH2 via the prostaglandin F synthase (PGFS) or through
further metabolism of PGE2 and PGD2 by PGE 9-ketoreductase
and PGD 11-ketoreductase, respectively (50). Prostacyclin (PGI2)
is produced via the prostacyclin synthase (PGIS) and is usually
detected as its stable but inactive metabolite 6-keto-PGF1α (51).
Finally, thromboxane synthase (TXS) converts PGH2 to TXA2,
an unstable prostanoid that is quickly hydrolyzed to the stable
but inert metabolite TXB2 (51). The bioactivity of prostanoids is
mediated through G protein-coupled receptors for PGE2, PGD2,
PGF2α, PGI2, and TXA2, designated EP, DP, FP, IP, and TP,
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FIGURE 1 | Schematic representation of the main biochemical pathways that mediate the production of prostanoids. COX, cyclooxygenase; PGES,
prostaglandin E synthase; PGDS, prostaglandin D synthase; PGFS, prostaglandin F synthase; PGIS, prostacyclin synthase; TXS, thromboxane synthase.

FIGURE 2 | Schematic representation of the main biochemical
pathways that mediate the production of mono-hydroxy fatty acids
and leukotrienes (A), and the poly-hydroxy fatty acids lipoxins,
resolvins, and protectins (B), products of transcellular metabolism.

LOX, lipoxygenase; HETE, eicosatetraenoic acid; HEpETE,
eicosaperoxytetraenoic acid; LT, leukotriene; acCOX-2, acetylated
cyclooxygenase-2; CYP, cytochrome P450; LX, lipoxin; RvE, resolving
series E; RvD, resolving series D; MaR, maresin.

respectively. Pharmacological studies into their ligand-binding
profiles and signal transduction pathways, and genetic analysis
led to their classification into eight groups (EP1, EP2, EP3, EP4,
DP1, FP, IP, and TP) although new developments have revealed

the presence of a second PGD receptor, DP2, and the presence of
heterodimers (52, 53). Overall, prostanoids are potent autacoids
and their levels are controlled through enzymatic catabolism via
dehydrogenations and reductions resulting in the formation of
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FIGURE 3 | Schematic representation of the main biochemical
pathways that mediate the production of endocannabinoids
anandamide (AEA) (A) and 2 arachidonoyl glycerol (2-AG) (B). DAG,
diacylglycerol; DAGL, diacylglycerol lipase; FAAH, fatty acid amide
hydrolase; 15OH 2AG, 15 hydroxy-2 arachidonoyl glycerol; MAGL,
monoacylglycerol lipase; NAPE, N -acylated ethanolamine phospholipids;
PGE2, PGE2 ethanolamide; PGE2-GE, PGE2-glyceryl ester.

metabolites with significantly reduced bioactivities (e.g., 15-keto-
and 13,14-dihydro-15-keto PGs) (54).

LIPOXYGENASE-MEDIATED PRODUCTION OF LEUKOTRIENES AND
OTHER HYDROXY FATTY ACIDS
Lipoxygenases mediate the oxygenation of free fatty acids includ-
ing AA and other PUFA. Their activities are commonly defined
by their positional selectivity when they oxygenate AA and, fol-
lowing this system, the main mammalian LOX enzymes are
defined as 5-, 12-, and 15-LOX. They catalyze the stereoselec-
tive insertion of OH in the S configuration, with the exception
of a mammalian skin-specific enzyme 12R-LOX. The products of
LOX reactions are unstable hydroperoxides that are then reduced
to hydroxy acids (55–57) (Figure 2). 5-LOX acts in concert

with 5-lipoxygenase activating protein (FLAP) to metabolize AA
to 5S-hydroperoxyeicosatetraenoic acid (HPETE) that is further
reduced to 5S-HETE or dehydrated to LTA4, an unstable epox-
ide containing a conjugated triene system characteristic of all
LT. LTA4 can be metabolized to LTB4 or form the cysteinyl
LT, LTC4, LTD4, LTE4 following conjugation with reduced glu-
tathione (58). 5S-HETE can be also enzymatically reduced to
the 5-oxo-eicosatetraenoic acid (5-oxo-ETE), a chemoattractant
mediator (59). Mammalian 12- and 15-LOX isozymes oxygenate
a range of PUFA, both free and esterified in membrane phos-
pholipids and lipoproteins (57), forming a multitude of mono-
and poly-hydroxy fatty acids: e.g., AA produces hydroxyeicosate-
traenoic acids (HETE), EPA generates hydroxyeicosapentaenoic
acids (HEPE), DHA produces docosanoids including hydroxydo-
cosahexaenoic acids (HDHA), linoleic acid (LA; 18:2n-6) forms
octadecanoids such as hydroxy octadecadienoic acids (HODE),
DGLA forms hydroxyeicosatrienoic acids (HETrE), etc.

CYTOCHROME P450 MEDIATED FATTY ACID EPOXIDES AND THEIR
DERIVATIVES
Cytochrome P450 mono-oxygenases relevant to PUFA metab-
olism catalyze epoxygenations and mid-chain and omega-
hydroxylations producing a range of LOX-like mono-hydroxy fatty
acids (e.g., HETE, HEPE, HODE) although not necessarily of the
S configuration [reviewed in Ref. (35)]. Interestingly, partially
inhibited COX-2 (e.g., acetylated COX-2 following treatment with
aspirin) can also generate LOX-like products with the OH group
at R configuration, e.g., 15R-HETE from AA and 18R-HEPE from
EPA (60). These metabolites are important in aspects of transcel-
lular metabolism where sequential LOX/LOX or acetylated COX-
2/LOX or CYP/LOX reactions involving more than one cell types
are involved in the formation of multi-hydroxy fatty acid species.
These include the lipoxins (LX) that are tri-hydroxytetraene-
products of AA, and the di- and tri-hydroxy-PUFA termed Rv,
PD, and maresins (MaR) that are derivatives of EPA and DHA.
All these mediators are involved in inflammation and immunity
exhibiting a range of protective roles (61–63).

THE ENDOCANNABINOIDS
The endocannabinoids anandamide (arachidonoyl ethanolamide,
AEA) and 2-arachidonoyl glycerol (2AG) are derivatives of AA
and act as endogenous ligands to the cannabinoid receptors CB1
and CB2 [reviewed in Ref. (36)]. This family of bioactive lipids
has been extended to include other fatty acid ethanolamides
and glycerols, while recent findings regarding their metabolism
suggest a wider involvement in inflammation and immunity.
The biochemical precursors of AEA and its congers are various
N -acylated ethanolamine phospholipids (NAPE) that found in
very low concentrations in the biological membranes and are
hydrolyzed by NAPE-specific PLD or PLC-type lipases. 2AG pro-
duction is mediated by PLC-diacylglycerol lipase. AEA and 2-AG
can be deactivated via hydrolysis mediated by fatty acid amide
hydrolases (FAAH) or can be metabolized by COX-2 to generated
prostaglandin ethanolamides known as prostamides (e.g., PGE2-
EA) and prostaglandin glyceryl esters (e.g. PGE2-GE) (Figure 3)
(52). LOX isozymes can also metabolize these lipids although the
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prevalence and bioactivities of the resulting mediators remain to
be explored.

EICOSANOIDS AND RELATED MEDIATORS IN T CELL
FUNCTION/BIOLOGY
PROSTANOIDS
It is now recognized that resting and activated T cells express the
COX-1/-2 system (64–68). Although the constitutive COX-1 is not
affected during T cell activation, the inducible COX-2 is upregu-
lated as has been shown in studies with CD4+ cells, Jurkat T
cells and adaptive Tregs (66–69). To date, very little is known
about the exact profile of prostanoids produced by T cells with
only a few studies reporting the production of PGE2, PGD2 and
its dehydration product 15d-PGJ2, as well as low levels of TXA2

(67, 68, 70). There is also very little information on the type of
prostanoid synthases expressed in T cells, including evidence for
H-PGDS and PGES in Tregs (67, 68). However, a number of stud-
ies have explored the role of PGE2, PGD2, PGI2, PGF2α, and TXA2

on various aspects of T cell function, showing that prostanoid-
mediated effects process through receptors and related signaling
pathways expressed in most T cell populations and subtypes. Inter-
estingly, it has been shown that treatment with AA upregulates the
CXCR3/1 inducible chemokine receptors expressed in CD4+ T
cells and increases their chemotactic responses through a COX-
related pathway (71), suggesting a potential role for this pathway
in the regulation of T cell migration.

PGE2

Although considered to be a, primarily, pro-inflammatory
eicosanoid, PGE2 can also mediate anti-inflammatory signals, and
is a potent immunosuppressor (72). PGE2 is one of the best-
studied bioactive lipids in T cell biology, exhibiting a multitude
of effects. It is involved in the early stages of T cell development in
the thymus, where it stimulates the differentiation of CD4+CD8+

thymocytes (73), while in later stages it regulates the develop-
ment and balance of Th1, Th2, and Th17 subsets (74–76) and,
overall, influences proliferation, differentiation, cytokine produc-
tion, and apoptosis of mature T cells (14, 77–80). Interestingly,
the activity of PGE2 on T cells appears to be concentration-
dependent: while at low concentrations, it is involved in home-
ostatic events and inhibits the activation and differentiation of T
lymphocytes, at high concentrations, PGE2 has the opposite effect,
increasing T cell proliferation, and suppressing immune functions
[recently reviewed in Ref. (81)]. For example, in ultraviolet radia-
tion (UVR)-induced immunosuppression, impaired development
of peripheral memory T cells can be attributed to UVR-induced
PGE2 production (82).

Antigen presenting dendritic cells (DC) and macrophages
secrete PGE2 and in this way can influence proliferation and dif-
ferentiation of CD4+ and CD8+ cells, and direct the balance of
Th1, Th2, and Th17 cell subtypes (14). PGE2 can also affect the
maturation of DC and alter DC-produced cytokines, thus influ-
encing the differentiation of T cell subtypes: for example, DC cells
matured in the presence of PGE2 in vitro promote Th17 and inhibit
Th1/Th2 polarization (78). PGE2 can also enhance the prolifera-
tion of T cells through the induction of costimulatory molecules
OX40L, CD70, and 4-1BBL on DC (83), while other studies have

reported that PGE2 inhibits the ability of DC to produce CCL19
and attract naive T cells (84). Interestingly, the ratio DC:T cells
appears to be crucial in determining the overall immunogenic
effect of PGE2: it has been reported that at high DC:T cell ratios,
PGE2-maturated DC cells inhibit the proliferation of T cells, while,
when this cell ratio is low, an enhanced T cell stimulation is
observed (85). A dose-dependent effect has also been observed
in the way PGE2 mediates the balance Th1 to Th2 subtypes: high
levels of PGE2 suppress Th1 cell differentiation and polarization,
shifting the immune response toward a Th2 phenotype (79). These
observations have been confirmed in vivo using COX-2 inhibitors
(e.g., celecoxib) and COX-2 knockout models demonstrating that
when PGE2 production is reduced, an increase in Th1 responses
is observed [reviewed in Ref. (81)]. The regulation of Th2 cells
by PGE2 is likely to impact in Th2-mediated immune disorders
such as atopic dermatitis and asthma (86, 87). Finally, when PGE2

is produced by activated macrophages it reduces T cell activation
and proliferation; this in turn leads to a reduction in cytokine pro-
duction and consequent reduced stimulation of macrophages in a
negative feed-back loop (72).

In vivo work has elucidated the role of EP receptors in mediat-
ing PGE2 effects. PGE2 produced by DC in the lymph node acts
through the EP1 receptor to promote the differentiation of naive T
cells to Th1 cells (88). Studies on the BALB/c mice, a strain show-
ing propensity to generate Th2 responses, have shown that Th2
cells express high levels of EP2 and that PGE2 signaling through
this receptor protects Th2 cells against activation induced cell
death (77). Furthermore, in a model of experimental autoimmune
encephalomyelitis (EAE), PGE2 signaling through EP4 was shown
to exert a dual role: promoting immune inflammation through
Th1 cell differentiation and Th17 cell expansion during the induc-
tion phase. In contrast, during the effector phase of the disease, it
attenuated the access of these pathogenic T cells to the brain by
protecting the blood brain barrier (89, 90).

PGE2-induced effects mediated via the EP2/EP4 receptors are
linked to cAMP concentration and related signaling (53). In cyto-
toxic T cells, PGE2 and other cAMP activators trigger increased
concentration of cAMP and this interferes with the cytoskeleton
function and terminates cytotoxic T cell secretion and adhe-
sion (91). Dietary interventions with n-3 and n-6 PUFA can
alter the cell membrane composition with consequent changes
in the concentration of PGE2 produced, as well as the preva-
lence of the less-inflammatory PGE species, PGE1 and PGE3 (44).
Although frequently cited as anti-inflammatory, these species do
not always appear to be different in their immunomodulatory
properties: for example, studies have shown that both PGE2 and
PGE1 suppress mitogen-induced blastogenesis in T cells, an effect
confirmed with experiments using indomethacin, a non-specific
COX inhibitor (92).

PGE2 ethanolamide appears to be also involved in the motility
of T cells (93, 94) and recent work using imaging has identified
PGE2 as an antagonist of the T cell migration stop signal (95).
This activity was shown to be subset specific, with Th migration in
response to IL-2 inhibited at 10–100 ng/ml PGE2 in vitro, although,
in the same experimental conditions, the migration of cytotoxic
T cells was not affected (96, 97). PGE2 has also been suggested to
inhibit the transendothelial migration of T cells through increased
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calcium and cAMP concentrations (98, 99). In rats, PGE2 was
found to inhibit the migration of T cells across the microvascular
retinal endothelial cells although it did not affect the expression of
adhesion molecules on either endothelial or T cells (100). How-
ever, PGE2 at nanomolar to micromolar concentrations elicited
migration of T cells in vitro and increased secretion matrix met-
alloproteinases (MMP); although MMP inhibitors suppressed the
transmigration, the inhibition did not affect the PGE2-initiated T
cell motility (101). Finally, overexpression of COX-2 in a mouse
breast cancer model increased the recruitment of Tregs in the
tumor, an effect mediated via EP2 and EP4 receptors (102).

PGD2 and15d-PGJ2

PGD2 is considered an immunomodulatory prostaglandin and
some of its cyclopentanone PG metabolites, such as 15-deoxy-
∆12,14-PGJ2 (15d-PGJ2), are endowed with anti-inflammatory
activities (49, 103). Production of PGD2 has been detected in Th2
cells and this was linked to expression of H-PGDS, while L-PGDS
has not been identified in any T cell subtype (67, 104, 105). The
downstream product of PGD2 dehydration, 15d-PGJ2, has also
been detected in human T cell cultures (67).

PGD2 mediates its effects through two receptors DP1 and DP2,
the latter better known as chemoattractant receptor-homologous
molecule expressed on Th2 cells (CRTH2). DP1 belongs to the
prostanoid family of receptors, signals through cAMP and has been
detected in Th1, Th2, and CD8+ cells (106). DP2/CRTH2 has lit-
tle similarity to prostanoid receptors and belongs to the cytokine
receptor family; it signals through increased calcium and inhibi-
tion of cAMP and has been found to be preferentially expressed by
activated Th2 cells mediating their recruitment and motility (106,
107). While PGD2 can signal through either receptor, findings to
date indicate that 15d-PGJ2 activates only DP2 (103). It has been
suggested that PGH2 may also be an agonist of DP2 (108). PGD2

and 15d-PGJ2 are also agonists of PPARγ and can induce differen-
tiation of fibroblasts to adipocytes; this has been shown in the case
of Grave’s disease where it was reported that activated T cells drive
fibroblast differentiation in ocular tissue through production of
PGD2 and 15d-PGJ2, implying that T cell infiltrates can influence
fat deposition in other tissues (67).

PGD2 can mediate different effects depending on the target
receptor and related signaling events (109). DP1 can induce dif-
ferentiation of Th2, whilst DP2/CRTH2 is mostly involved in
their recruitment, although the two receptors may exert opposing
effects, as examined in an animal model of contact hypersensitiv-
ity where DP2/CRTH2 appeared to mediate inflammatory events
while DP1 was inhibitory (110). Furthermore, both receptors have
been reported involved in T cell proliferation, and DP1 has been
suggested to promote T cell apoptosis and downregulate immune
responses, while DP2 has been reported to delay Th2 apoptosis
(111). A potentially anti-inflammatory protective effect of 15-
dPGJ2 in pregnancy has been attributed to its suppression of Th1
response and promotion of Th2 immunity through DP2 (112).

Activation of Th2 cells by PGD2 is thought to occur pre-
dominantly through DP2/CRTH2 with concomitant increase in
the production of cytokines and pro-inflammatory proteins (106,
113–115). PGD2 binding to this receptor is also very important for
CD4+ T cell trafficking and motility (116, 117). When produced

at high concentrations by mast cells, as seen in allergic inflamma-
tion, there is a consequent activation and recruitment of Th2 cells
toward the PGD2 producing sites (118, 119). Activated T cells can
also produce PGD2 and this may promote further accumulation
of Th2 in the inflamed tissue (107, 116).

Finally, PGD2 has been shown to affect the maturation of
monocyte derived DC impacting on their ability to stimulate
naive T cells and favoring their differentiation toward Th2 cells
(120, 121). Interestingly, age related increase in PGD2 levels have
been associated with decreased DC migration and reduced T cell
responses in a mouse model of respiratory infections, suggesting
that inhibition of PGD2 functions may be an effective therapeutic
approach (122).

PGF2α

To date, there is very limited information on the contribution
of this vasoactive prostaglandin on T cell function. There are
no reports on the production of PGF2α or expression of the
relevant synthases on T lymphocytes. Early work exploring the
involvement on PG on T cell locomotion considered the involve-
ment of PGF2α but this was not supported by the resulting data
(93). However, a recent report on allergic lung inflammation
presents evidence for the contribution of PGF2α in Th17 cell dif-
ferentiation, an autocrine effect mediated through cell surface FP
receptors (123).

PGI2

PGI2 is best known as an inhibitor of platelet aggregation and
potent vasodilator, while recent finding has shown its involve-
ment in immune regulation with particular importance in air-
way inflammation. The IP receptor is expressed in a number of
immune cells in the lung, including T lymphocytes of the Th1 and
Th2 lineage (124, 125). However, there is very little information on
the actual production of PGI2 by T cells with only some indirect
evidence for possible transcellular biosynthesis operating between
platelets and lymphocytes, and some recent work showing PGIS
mRNA in an animal model of contact hypersensitivity (125, 126).

Studies in various models suggest that PGI2 is involved in regu-
lating the balance of Th1 and Th2 responses, as well as promoting
Th17 cell differentiation (13, 127). Work in a mouse model of
asthma has shown that PGI2 produced by endothelial cells and
signaling through the IP receptor prevents the recruitment of Th2
in the airways (128). However, a mouse model of contact hyper-
sensitivity shows that in cutaneous disease PGI2-IP signaling raises
intracellular cAMP concentration and promotes Th1 differentia-
tion (125). Furthermore, PGI2 increased the ratio of IL-23/IL-12
leading to differentiation of Th17 cells and exacerbation of EAE
in mice (129). Finally, the anti-inflammatory effect of PGI2 has
been explored through analogs that reduced the production of
pro-inflammatory cytokines and chemokines by DC, increased
the production of anti-inflammatory IL-10, and inhibited their
ability to stimulate CD4+ T cell proliferation (124).

TXA2

Although production of TXA2 by T cells has been reported, albeit
at very low levels, the expression of the relevant synthase has not
yet been shown (70, 130). However, the TP receptor has been
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found in a range of T cell populations and a polymorphism iden-
tified in Th2 cells has been linked to aspirin-exacerbated respira-
tory disease (130–133). Work with human lymphocytes suggested
that TXA2 is involved in the inhibition of T cell proliferation
and related cytokine production (134). Following production of
TXA2 by DC, stimulation in TP expression was observed and this
appeared to be involved in the random movement of naive but
not memory T cells, suggesting that TXA2 can mediate DC–T cell
interactions (130).

LEUKOTRIENES, HYDROXY FATTY ACIDS, LIPOXINS, RESOLVINS, AND
PROTECTINS
Lipoxygenase isoforms identified in various T cell populations
include 5-, 12-, and 15-LOX (135–138). Although some early stud-
ies suggested that externally provided AA could inhibit 5-LOX,
recent reports have indicated that provision of substrate may be
necessary for the synthesis of LTs (135, 139). There is evidence
that 5-HETE, LTA4 and LTB4, and the cysteinyl LT LTC4, LTD4,
and LTE4, are produced by human and animal primary T cells and
cell lines (43, 135, 138, 139). Furthermore, the presence of 5-LOX
and 12/15-LOX would suggest the production of hydroperoxy- and
hydroxy-PUFA by T cells. Nevertheless, there are not many stud-
ies examining the formation of such mediators and the majority
of relevant reports focus on the effect of 12- and 15-HETE, LX,
resolvins, and PD on T cell function.

LTB4

The main activity attributed to LTB4 is chemotaxis, a property
mediated through the high affinity receptor BLT1 that is expressed
in many CD4+ and CD8+ T cell subtypes (140–143). BLT1 is
also important for homing events, as it enables the adhesion of T
cells to epithelial cells, and appears of particular importance for
the recruitment and direction of T cells to the airways in asthma
(141, 144). Blockade of LTB4/BLT1 pathway has also been shown to
improve CD8+ T cell mediated colitis (145). Finally, LTB4 appears
involved in Th17 cell differentiation, Th1 and Th2 proliferation,
and cytokine production (146–149).

LTC4, LTD4, LTE4

The cysteinyl LT specific receptors CysLT1 and CysLT2 have been
found to be expressed by peripheral blood T cells (150). Inter-
estingly, it has been reported that resting Th2 cells display higher
expression of the CysLT1 receptor compared to Th1 or activated
Th2 cells, suggesting its involvement in Th2 cell differentiation
(151, 152). Accordingly, in the presence of PGD2, LTD4 and LTE4

have been shown to enhance Th2 cell activation and cytokine
production, in a more than additive effect (153).

Furthermore, LTC4 appears to induce T cell proliferation (154),
while LTC4-maturated DC appear to stimulate CD4+ responses
and induce cytotoxic T cells in vitro without concomitant recruit-
ment of Tregs (155).

5-HETE and 5-oxo-ETE
Oxidative stress appears to stimulate the metabolism of 5-HETE
to 5-oxo-ETE in peripheral blood lymphocytes, although the role
of this lipid mediator in T cell function is not clear (156, 157).

12-, 15-HETE
12-HETE has been involved in T cell function, with particular rel-
evance to allergic disease. Although 12(S)-HETE is a neutrophil
chemoattractant it does not appear to have a similar effect on
T cells. Work on skin-derived lymphocytes involved in psoriasis
has shown that 12(R)-HETE, a 12R-LOX product found in pso-
riatic skin, has modest chemotactic properties for T cells but is
less potent than LTB4 (158, 159). Furthermore, it has been shown
that inhibition of 12/15-LOX enhanced the production of Th2
cytokines and attenuated the development of allergic inflamma-
tion in a mouse model of allergic lung disease, whilst delivery
of 12(S)-HETE had the opposite effect (136). Increased levels of
12-HETE were also associated with metabolic changes in T cells
leading to development of autoimmune disease (137).

It has been reported that 15-HETE regulates T cell division
and displays anti-proliferative effects on a leukemia T cell line
(160–162). Metabolism of 15-HETE through β-oxidation has been
observed in blood T cells leading to the hypothesis that the result-
ing β-hydroxy acids and their oxidized and decarboxylated prod-
ucts may play a role in T cell biology (163). 15-LOX metabolites
have also been involved in Th1 responses in a mouse model of Th1
allergic inflammation induced by double-stranded RNA (164).

Lipoxins
Although not directly produced by T cells, LXA4 has been shown
to interact with the LTB4 receptor expressed in T cells (165, 166).
Aspirin-triggered LXA4 and LXB4, and stable analogs, inhibited
TNFα production by human peripheral blood T cells suggesting
the involvement of these metabolites in T cell mediated inflamma-
tion (167). Finally, LXA4 appears to be involved in Treg-mediated
tumor protection through the induction of myeloid suppressor
cells, as shown in a murine liver cancer model (168).

Resolvins and protectins
These products of EPA and DHA are formed through transcel-
lular metabolism and some of their anti-inflammatory and pro-
resolution effects are mediated through their effects on T cells. It
has been reported that PD1 is formed by Th2-skewed peripheral
blood mononuclear cells and appeared to block T cell migration,
inhibit TNFα and IFγ secretion, and promote apoptosis in vivo
(169). Reduction of CD4+ and CD8+ T cell infiltrates and CD4+

T cell-produced cytokines was also observed in a mouse model
of DNFB-induced atopic dermatitis treated with RvE1 (170).
Furthermore, RvE1-treated bone marrow-derived DC appear to
induce apoptosis of T cells, and it has been suggested that instead
of migrating to the lymph nodes they remain on the inflamma-
tory sites targeting the infiltrating effector T cells (171). RvE1 has
also been shown to reduce the influx of Th1 and Th17 cells in the
cornea of a mouse model of stromal keratitis, a virally induced
immunopathological disease; it has been suggested that this may
have contributed to a significant reduction in lesions observed
(172).

ENDOCANNABINOIDS AND CONGENERS
The endocannabinoid system is considered an important regula-
tor of the immune response with AEA, 2AG, and related enzymes
and receptors being involved in T cell function (173–176). Produc-
tion of AEA and 2AG have been shown in human T lymphocytes
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(177, 178), while the receptors CB1 and CB2 have been identified
in primary T cells and T cell lines where their expression is stim-
ulated upon activation (179, 180). In particular, the CB2 receptor
has been shown to mediate the inhibition of mixed lymphocyte
reactions by cannabinoids and is of interest for the development
of novel chemotherapeutic approaches to prolong graft survival
(181). Furthermore, CB2 has been suggested as an important fac-
tor for the formation of T cell subsets including splenic memory
CD4+ cells and natural killer T cells (182). Interestingly, a com-
mon CB2 gene polymorphism has been linked to reduced immune
modulation by endocannabinoids and may be a risk factor for
autoimmune disorders (183). Finally, FAAH and monoacylglyc-
erol lipase (MAGL) are also present in human T lymphocytes
(179). FAAH appears to play a protective role controlling the
levels of AEA in pregnancy as well as immune-mediated liver
inflammation (178, 184).

AEA and congeners
Work with activated primary human T lymphocytes has shown
that AEA can suppress T cell proliferation and cytokine release
in a CB2-dependent manner, without exerting cytotoxic effects
(185, 186). However, other studies suggested that AEA inhibits T
cell proliferation and induces apoptosis through a mechanism that
may not be receptor mediated but most probably related to lipid
rafts (187, 188).

The immunosuppressive effect of AEA extends to Th17 cell and
this is of particular interest for the development of immunothera-
peutic approaches (186). Endogenous AEA or inhibition of FAAH
leading to increased AEA levels, were effective in reducing cytokine
levels, decreased liver injury, and increased numbers of Treg cells
in a murine model of immune-mediated liver inflammation (184).
AEA inhibited the migration of CD8+ T cells in a collagen-based
migration assay, again through the CB2 receptor (189). How-
ever, a study evaluating the direct anti-cancer potential of AEA,
reported no effect on lymphocyte proliferation or Treg genera-
tion or cytokine production (190). In contrast, other studies have
reported proinflammatory effects by AEA. In a mouse model of
atherosclerosis, reduced levels of FAAH that resulted in increased
AEA and its congeners, palmitoyl- and oleoyl-ethanolamide, were
accompanied by reduced CD4+FoxP3+ regulatory T cells, sug-
gesting a pro-inflammatory effect on the overall immune response
(191). In addition, AEA appears to promote Th1 immunity as
shown in a model of sensitization where it was reported to
induce DC activation and IFNγ production (192). Finally, a recent
study with bimatoprost suggested that this prostamide can induce
calcium signaling in human T cells (193).

2AG
The chemotactic properties of 2AG are also mediated through
the CB2 receptor and this has been shown in various immune
cells including migration of splenocytes (194), homing of B cells
(195), and motility of human natural killer cells (196). When
this potential was assessed in activated T lymphocytes, it was
reported that although 2AG did not induce T cell migration, it
inhibited migratory responses toward the chemokine CXCL12,
suggesting a possible regulatory role in T cell migration (179).
Furthermore, 2AG can act as DC chemoattractant and indirectly

shift the memory response toward a Th1 phenotype in a CB2-
mediated fashion (197). 2AG can also suppress IL-2 production
in Jurkat cells through PPAR-γ activation and independently of
CB1 and CB2-mediated signaling (198). The contribution of a
COX-2 metabolite of 2AG has also been considered by recent
reports confirming that the 15-deoxy-delta (1)(2),(1)(4)-PGJ2-
glycerol ester (15d-PGJ2-GE) is a PPAR-γ ligand that suppresses
IL-2 production in activated Jurkat cells (111, 199).

CONCLUDING REMARKS
While current evidence support a key role for PUFA-derived bioac-
tive lipids in the regulation of T cell immunity (Table 1), the
complexity of their biological properties and the lack of a com-
prehensive understanding of their exact contribution to different
stages of the immune response hinders the identification of medi-
ators of interest either as markers or as target compounds for drug
development. In general, it appears that lipid mediators regulate T
helper cell polarization into Th1/Th2 and Th17 cells, a key event in
many immune-mediated diseases. Despite the molecular mecha-
nisms for this effect and the regulatory role of these lipids on
other T cell functions have yet to be explored, an extensive num-
ber of studies in mice and humans underscore their therapeutic
potential.

This concept is supported by the large number of studies using
their precursor fatty acids. Of particular importance is the focus
on n-3 PUFA that have been explored as anti-inflammatory and
immune-protective agents for a range of diseases and relevant
experimental models including psoriasis, rheumatoid arthritis,
and atherosclerosis (32, 33, 200). A recent study has shown that
dietary n-3 PUFA favorably modulate intestinal inflammation in
part by downregulating pathogenic T cell responses (201). The Fat-
1 mouse, a genetic model that synthesizes long-chain n-3 PUFA
de novo, was shown to be relatively resistant to colitis induction
due to a reduced differentiation of Th17 cells and related cytokines
(202). The immunoregulatory potential of a number of fatty acids
has been reported over the years including that of DGLA and GLA
(203), stearidonic acid (204) as well as various CLA mixtures used
for inflammatory bowel syndrome and human Crohn’s disease
(205). Parenteral administration of fatty acids has been shown to
ameliorate disease via immunomodulatory effect in a model of
rat sepsis (206), A randomized study in patients awaiting carotid
endarterectomy showed that n-3 PUFA ethyl esters are incorpo-
rated into advanced atherosclerotic plaques and higher plaque EPA
is associated with decreased plaque inflammation and T cell infil-
tration, and increased stability following dietary supplementation
with EPA (207).

Furthermore, altering the profile of lipid mediators to
strengthen the responses of T cells may be of value to cancer
immunotherapy and could result in the development of potent
and/or less toxic therapeutics. For example, it is well-documented
that most tumors express PGE2 and this can contribute to immune
suppression (103, 208). Pharmacological inhibition of PGE2 via
non-steroidal anti-inflammatory drugs or EP receptor agonists
could be supported or even replaced by systemic administration
of EPA, precursor of the less potent eicosanoid PGE3 and the anti-
inflammatory resolving series E (RvE) that can tone down the
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Table 1 | Summary of the main immunoregulatory roles of bioactive lipid mediators related toT cell function and biology.

Lipid mediator Receptor Effect onT cells Reference

PGE2 EP1, EP2/EP4 Differentiation (73, 78, 79, 81, 88)

EP2/EP4 Proliferation (72, 81, 83, 85)

EP2/EP4 Cytokine production (72, 77–80)

EP2/EP4 Apoptosis (77, 91)

EP2/EP4 Motility of T cells (93–95)

EP2/EP4 Treg recruitment (102)

EP2/EP4 Th1, Th2, Th17 balance (14, 74–76, 78, 79)

PGD2 DP1 Differentiation of Th2; T cell apoptosis (110, 120, 121)

DP1, DP2 Recruitment, proliferation of Th2 (111)

DP2 Activation, cytokine production, trafficking, and motility of Th2 (106, 107, 113–119)

15d-PGJ2 DP2 Suppression of Th1 and promotion of Th2 (103, 112)

DC–T cell interaction (120, 121)

PGF2α FP Th17 differentiation (123)

PGI2 IP Th1/Th2 balance (13)

Th1, Th17 differentiation (125, 127, 129)

TXA2 TP Inhibition of T cell proliferation (134)

Mediation of DC-T cell interactions (130)

LTB4 BLT1 Homing (141, 144)

Differentiation, proliferation, and cytokine production (146–149)

CysLTD4 CysLT1 Th2 differentiation (151–153)

CysLTE4

12-HETE Weak T cell chemotaxis (158, 159)

Metabolic changes (137)

15-HETE Proliferation (160–162)

Th1 responses (164)

LXA4 BLT1 Cytokine production (167)

AEA CB2 Suppression of Th1 and Th17 proliferation and cytokine release (185, 186)

– Inhibition of proliferation; apoptosis via membrane rafts (187, 188)

Increased Tregs (184)

2AG CB2 T cell migration (179)

Suppression of cytokine production via PPAR-γ (189)

PGE2-mediated effects. Finally, a large number of other investiga-
tions have reported that immunonutrition with fatty acids leads to
amelioration of a variety of immune-mediated disease by target-
ing T cell function. Examples include studies showing that the use
of n-3 PUFA can improve lung injury and sepsis in animal mod-
els, and reduce infectious complications in patients undergoing
major surgery and following severe trauma (209–211), while other
reports draw attention to the contribution of fatty acids and their
mediators in vaccine-induced immunity in infants, the prevention
of experimental autoimmune encephalomyelitis through inhibi-
tion of Th1/Th17 differentiation by DHA, EPA-mediated protec-
tion of cardiac allografts, and amelioration of contact dermatitis
following DHA and AA supplements (212–215).

Overall, there is a strong case for further developing therapeutic
approaches based on the use of bioactive lipids as immunomod-
ulators. The unmet challenge to fully exploit their therapeutic
potential will be to unravel the circuits and molecular mechanisms
by which these powerful mediators impact on T cell-mediated
immunity.
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