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Elementary doctrines as coalgebras?

Jacopo Emmeneggera, Fabio Pasqualib, Giuseppe Rosolinib,∗

aSchool of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
bDIMA, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy

Abstract

Lawvere’s hyperdoctrines mark the beginning of applications of category theory
to logic. In particular, existential elementary doctrines proved essential to give
models of non-classical logics. The clear connection between (typed) logical
theories and certain Pos-valued functors is exemplified by the embedding of the
category of elementary doctrines into that of primary doctrines, which has a
right adjoint given by a completion which freely adds quotients for equivalence
relations.

We extend that result to show that, in fact, the embedding is 2-functorial
and 2-comonadic. As a byproduct we apply the result to produce an algebraic
way to extend a first order theory to one which eliminates imaginaries, discuss
how it relates to Shelah’s original, and show how it works in a wider variety of
situations.

Keywords: elementary doctrine, 2-comonad, quotient completion, elimination
of imaginaries
2020 MSC: 03G30, 18C50, 18C20, 03B10, 03B20, 03C45

1. Introduction

Lawvere’s hyperdoctrines mark the beginning of applications of category the-
ory in logic, and they provide a very clear algebraic tool to work with syntactic
theories and their extensions in logic, see [12, 10]. Lawvere’s basic intuition in
the categorical approach to logic was to rely on the notion of fibration.

As a very basic instance of this, recall that a primary doctrine is a func-
tor P : C op // Pos such that (i) the base category C has finite products, (ii)
for every object A of C , the poset P (A) has finite meets and, (iii) for every
arrow f :A // B, the monotone function f∗ = P (f):P (B) // P (A) preserves
finite meets. Indeed, these data amount to the same as a faithful fibration with
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products, see [7]. From this point of view, a logical theory becomes a present-
ation of a primary doctrine. And conversely, a primary doctrine gives rise to a
logical theory in the >∧-fragment of first order logic, see [20].

As mathematical structures, primary doctrines come arranged naturally into
a 2-category PD, which is equivalent to the 2-category of faithful fibrations with
fibred products, see [7, 25]. The equivalence restricts between the 2-category of
elementary doctrines ED which, in turn, correspond to logical theories in the
>∧=-fragment, and the 2-category of faithful fibrations with equality.

The categorical approach allows the authors of [14] to describe a conservative
extension of a logical theory which adds quotient types, in terms of a completion
(−)q: ED // QED, where QED is the subcategory of ED on elementary
doctrines with quotients. That completion is pseudo-monadic, see [26], and
in [19] the second author shows that in fact the quotient completion provides
a right adjoint R: PD // ED to the embedding of elementary doctrines into
primary doctrines. Write T : PD // PD for the 2-comonad induced by that
adjunction.

In the present paper, we extend that analysis to show that the comparison
2-functor

ED
K // T -Coalg

is an isomorphism, hence the embedding ED �
� // PD is 2-comonadic. It

follows that the associated monad on the 2-category of coalgebras T -Coalg
coincides with the monad M on ED generated by (−)q, as depicted in the
diagram below.

QED
� � //

>
(−)q

oo
ED

M
�� Roo

>� � // PD

T
��

Ps-M-Alg
��

>

?�

OO

&&
≡

T -Coalg
��

>

?�

OO

K

''
≡

As an application, we consider the elimination of imaginaries in the sense of
Poizat [22]. Given a model of a theory, an imaginary element is an equivalence
class with respect to a definable equivalence relation in the model. Roughly
speaking, a theory eliminates imaginaries if all imaginary elements are definable,
see Section 4 for details.

We show that, by viewing first order theories as presentations of certain
primary doctrines, the functor R associates to a theory another theory which
eliminates imaginaries. Moreover, if the original theory has equality, then the
extension has the same models as the original theory. The categorical standpoint
allows us to compare the construction we provide with another construction of a
theory eliminating imaginaries given by Shelah in the context of classical model
theory [24], and to observe that the one described in the present paper applies
to a broader class of theories.
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In Section 2 we recall the main definitions and fix notation. We also provide
a simple characterization of elementary doctrines which is useful for the proof of
the main theorem. Section 3 contains the statement of the main theorem about
the comonadicity of R and its proof. In Section 4 we present an application
of the main theorem to the elimination of imaginaries. This is compared to
Shelah’s T eq from [24] in Section 5.

2. Preliminaries

We recall some notions and constructions from [19] following very closely the
notations introduced there: a primary doctrine is a functor P : C op // Pos
from a category C with finite products into the category of posets such that, for
every object A in the base category C , the fibre P (A) is an inf-semilattice, and
for every arrow f :A // A′, the reindexing f∗:P (A′) // P (A) preserves finite
meets. This amounts to the same data as a functor P : C op // ISL like in [19].

When necessary to avoid confusion, we may decorate with an index A the
order ≤, the meet ∧ and the top element > of the fibre P (A).

There is a large variety of examples for which we refer the reader to [7, 15, 20].
Throughout the section we shall exemplify definitions considering the following
one.

Example 2.1. Given an inf-semilattice H consider the functor H(−): Set op //

Pos that sends a set A to the poset HA of functions from A to H with the
pointwise order, and a function f :A // B to Hf := − ◦ f . The contravariant
functor H(−) is a primary doctrine.

For H the two-element boolean algebra B, the doctrine B(−) is isomorphic
to the contravariant powerset functor P: Set op // Pos.

Primary doctrines are the objects of the 2-category PD where

the 1-cells are pairs f = (f , f̂) where f : C // D is a product-preserving functor

and f̂ :P . // R ◦ (f)op is a natural transformation as in the diagram

C op
P

))
f
op

��
Pos

Dop R

55•f̂
��

and, for every object A in the base C , the monotone function f̂A:P (A) //

R(f(A)) preserves finite meets.
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the 2-cells θ: f ⇒ g are natural transformations θ: f . // g such that

C op

P

,,
f
op

��

gop

��

Pos

Dop R

22•f̂
��

• ĝ

��

•

θop
oo ≤

so that, for everyA in C and every α in P (A), one has f̂A(α) ≤ RθA(ĝA(α)).

A primary doctrine P : C op // Pos is elementary when, for every object
A in C , there is an object δPA in P (A × A) such that, for every object X in C ,
the functor

P (X ×A)
ÆP
X,A // P (X ×A×A)

α
� // 〈pr1,pr2〉∗(α) ∧ 〈pr2,pr3〉∗(δPA)

is left adjoint to the reindexing 〈pr1,pr2,pr2〉∗:P (X × A × A) // P (X × A)
along the arrow 〈pr1,pr2,pr2〉:X ×A // X ×A×A.

We shall drop the superscript from δPA when the doctrine P is clear from the
context.

Example 2.2. Given an inf-semilattice H, the primary doctrine H(−): Set op //

Pos is elementary if and only if H has a least element. Indeed, if H has a least
element ⊥, the object δA ∈ HA×A can be taken as the function

(x, x′) 7−→

{
>, if x = x′

⊥, otherwise.

Conversely suppose H(−) is elementary and consider the set A := {0, 1}. For
every h ∈ H let αh ∈ HA be the function that maps 0 to > and 1 to h. Then

δA(0, 1) = > ∧ δA(0, 1) = αh ◦ pr1(0, 1) ∧ δA(0, 1) ≤ αh ◦ pr2(0, 1) = h

showing that δA(0, 1) is a bottom element. In particular, the powerset functor
P is elementary.

The 2-category ED is the 2-full subcategory of PD on the elementary doc-
trines where a 1-cell f :P // R of PD is in ED if the bA’s commute with the
left adjoints, in the sense that there are commutative diagrams

P (X ×A)

ÆP
X,A

��

f̂X×A

// R(f(X ×A))
∼

R(〈fpr1, fpr2〉−1)
// R(fX × fA)

ÆR
fX,fA

��
P (X ×A×A)

f̂X×A×A

// R(f(X ×A×A))
∼

R(〈fpr1, fpr2, fpr3〉−1)
// R(fX × fA× fA)
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We shall say that a primary doctrine P is first-order if each fibre is a Heyt-
ing algebra, reindexing preserves the structure and reindexing along a product
projection has left and right adjoints satisfying the Beck-Chevalley condition.
First-order doctrines are the objects of the category FOD, which is the 2-full
subcategory of PD on those 1-cells f such that every component of f̂ is a ho-
momorphism of Heyting algebras commuting with the left and right adjoints.
Elementary first-order doctrines are what Pitts in [21] calls first order hyper-
doctrines. We shall use the two names interchangeably and denote the category
of (first order) hyperdoctrines as HD, which is the pullback of FOD and ED
in PD.

Remark 2.3. In an elementary first-order doctrine P : C op // Pos, for every
arrow f :A // B in the base category, the reindexing functor f∗:P (B) //

P (A) has a left adjoint

EP
f :P (A) // P (B) which is obtained from those for

projections and for parametrised diagonals, see [21, Remark 4.6].

Example 2.4. For a given inf-semilattice H, the doctrine H(−) from Example 2.1
is elementary first-order if and only if H is complete.

It is well-known, see [7, 25], that the 2-category of primary doctrines is equi-
valent to the 2-category of faithful fibrations with fibred products, and that the
2-category of elementary doctrines is equivalent to the 2-category of faithful
fibrations with equality. Yet we have no reference for the following characteriz-
ation of elementary doctrines which will be useful for our future purposes.

Proposition 2.5. Let P : Cop // Pos be a primary doctrine. The following
are equivalent:

(i) P is elementary.

(ii) for each object C in C , there is an object dC in P (C × C) such that

(a) pr∗1(β) ∧ dC ≤ pr∗2(β) for every C and every β in P (C);
(b) >C ≤ 〈idC , idC〉∗(dC) for every C;
(c) 〈pr1,pr3〉∗(dC) ∧ 〈pr2,pr4〉∗(dD) ≤ dC×D for every C and D.

Proof. (i)⇒(ii) is well-known choosing δC for dC .
(ii)⇒(i) We want to show that choosing the object δPA to be dA in P (A × A)
makes the primary doctrine P elementary, in other words we must check that,
for every objects X in C , the functor

P (X ×A) // P (X ×A×A)

α � // 〈pr1,pr2〉∗(α) ∧ 〈pr2,pr3〉∗(dA)

is left adjoint to reindexing along the arrow 〈pr1,pr2,pr2〉:X ×A // X ×A×A
of C . Note first that, for γ in P (C × C),

〈pr1,pr1〉∗(γ) ∧ dC ≤ γ (1)
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since, using first (c), then (a), in P (C × C × C × C) one has that

〈pr1,pr2〉∗(γ) ∧ 〈pr1,pr3〉∗(dC) ∧ 〈pr2,pr4〉∗(dC) ≤ 〈pr1,pr2〉∗(γ) ∧ dC×C
≤ 〈pr3,pr4〉∗(γ).

By reindexing that inequality along 〈pr1,pr1,pr1,pr2〉:C×C // C×C×C×C,
condition (b) yields (1). For the left adjoint to reindexing along the diagonal
〈idC , idC〉:C // C×C, consider the assignment α 7→ pr∗1(α)∧dC where pr1:C×
C // C. If α ≤ 〈idC , idC〉∗(γ), then by (1)

pr∗1(α) ∧ dc ≤ pr∗1(〈idC , idC〉∗(γ)) ∧ dC ≤ 〈pr1,pr1〉∗(γ) ∧ dC ≤ γ.

If pr∗1(α) ∧ dC ≤ γ, then (b) yields

α ≤ α ∧ 〈idC , idC〉∗(dC) = 〈idC , idC〉∗(pr∗1(α) ∧ dC) ≤ 〈idC , idC〉∗(γ).

Taking C as X ×A, it follows that dX×A ≤ 〈pr1,pr3〉∗(dX) since by (b)

> ≤ 〈idX , idX〉∗(dX) = 〈idX×A, idX×A〉∗(〈pr1,pr3〉∗(dX)).

Similarly, dX×A ≤ 〈pr2,pr4〉∗(dA). So the left adjoint to reindexing along the
diagonal 〈pr1,pr2,pr1,pr2〉:X × A // X × A × X × A sends an object γ in
P (X × A × X × A) to 〈pr1,pr2〉∗(γ) ∧ 〈pr1,pr3〉∗(dX) ∧ 〈pr2,pr4〉∗(dA). The
conclusion follows easily.

Remark 2.6. It follows from [14, Remark 2.2] that, once a product

A A×A
pr1oo

pr2 //A

is chosen, there is a unique object object δA in P (A×A) which satisfies condi-
tions (a)-(c) in Proposition 2.5.

Corollary 2.7. Let P and R be elementary doctrines. A 1-cell f :P // R of
PD is in ED if and only if

f̂A×A(δPA) = 〈fpr1, fpr2〉∗(δRfA)

for every object A.

In [19] the second author proves that the inclusion ED �
� //PD , whose

functor we shall denote by L when needed, has a right adjoint; for the sake of
completeness, in the following we give a brief summary of that construction.
For P : C op // Pos a primary doctrine, let EP be the category determined by
the following data.

An object in EP is a pair (A, ρ) where A is an object in C and ρ is in P (A×A)
such that

(a) >A ≤ 〈idA, idA〉∗(ρ);

(b) ρ ≤ 〈pr2,pr1〉∗(ρ);
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(c) 〈pr1,pr2〉∗(ρ) ∧ 〈pr2,pr3〉∗(ρ) ≤ 〈pr1,pr3〉∗(ρ).

An arrow in EP f : (A, ρ) // (B, σ) is an arrow f :A // B in C such that
ρ ≤ (f × f)

∗
(σ).

It is customary to refer to conditions (a), (b), and (c) above as reflexivity,
symmetry and transitivity, respectively, and to say that the ρ-component of an
object of EP is a P -equivalence relation over A.

Remark 2.8. We haste to note that the usual construction of a “category of
partial equivalence relations” can be obtained as an appropriate quotient of a
category of the form EP which forces the equality of arrows in C to coincide
with the equality of the primary doctrine P , see [16].

A terminal object in EP can be computed as the pair (T,>T×T ) on a(ny)
terminal object T in C ; a product of (A, ρ) and (B, σ) in EP can be taken as

(A, ρ) (A×B, ρ� σ)
pr1oo

pr2 //(B, σ)

where ρ� σ := 〈pr1,pr3〉∗(ρ) ∧ 〈pr2,pr4〉∗(σ).
The category EP is the base of a primary doctrine PR: EP

op // Pos de-

termined as follows: the poset PR(A, ρ) is the sub-poset of P (A) on the descent
data for ρ, i.e.

PR(A, ρ) = {α ∈ P (A) | pr∗1(α) ∧ ρ ≤ pr∗2(α)} ⊆ P (A).

It is easy to check that PR(A, ρ) is a sub-inf-semilattice and that, for f : (A, ρ) //

(B, σ) in EP , the function f∗ maps PR(A, ρ) into PR(B, σ). So PR: EP
op //

Pos is indeed a primary doctrine, and it is elementary with δP
R

(A,ρ) = ρ by
Proposition 2.5.

For the same reason the construction extends to a 2-functor1 R: PD // ED
since, for a 1-cell f :P // R of elementary doctrines, each functor

P (A×A)
f̂A×A

//R(f(A×A))
∼

R(〈fpr1, fpr2〉−1)
//R(fA× fA)

turns P -equivalence relations into R-equivalence relations and preserves descent

data; the action of R on a 1-cell f = (f , f̂) is fR = (fR, f̂R) where fR is

EP
fR // ER

(A, ρ)

g

��

� // (fA,R(〈fpr1, fpr2〉−1)(f̂A×A(ρ)))

fg
��

� //

(A′, ρ′) � // (fA′, R(〈fpr1, fpr2〉−1)(f̂A′×A′(ρ
′)))

1The value R(P ) = PR is denoted as PD in [19]. In fact, in the following we use the
two notations PR and R(P ) for the action of a 2-functor interchangeably, with the hope to
improve readability.
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and, for (A, ρ) in EP , the (A, ρ) component of f̂R is

PR(A, ρ)

(
f̂R
)
(A,ρ) // RR(fR(A, ρ))

α � // f̂A(α).

The action of R on a 2-cell θ: f ⇒ g:P // R is simply
(
θR
)
(A,ρ)

= θA.

Examples 2.9. The following examples are from [11, 23].
(a) Consider the positive real line [0,∞) with the opposite of the natural

order, so 0 is the top element and there is no bottom element. Hence the primary

doctrine [0,∞)
(−)

, as in Example 2.1, is not elementary by Example 2.2. The
base category E [0,∞)(−) of the elementary doctrine(

[0,∞)
(−)
)R

: Eop

[0,∞)(−)
// Pos

is the category of pseudo ultrametric spaces; it consists of pairs (X, d) where
d:X × X // [0,∞) satisfies all the conditions of an ultrametric space but for
the identity of indiscernibles

d(x1, x2) = 0 if and only if x1 = x2

weakened to just d(x1, x1) = 0.
(b) The closed unit interval [0, 1] with the opposite of the natural order

is a complete Heyting algebra. Hence the doctrine [0, 1]
(−)

is elementary first-
order and the category E [0,1](−) is the category of 1-bounded pseudo ultrametric
spaces.

As announced previously, there is an adjunction ED � � //> PD
Roo

. The com-

ponent of the unit j on the elementary doctrine E: Bop // Pos is jE = (jE , ĵE)

Bop
E

))(
jE
)op
��

Pos

Eop
E

ER

55•ĵE
��

where jE(f :A // A′) = f : (A, δEA) // (A′, δEA′) and
(
ĵE

)
A

:E(A) // ER(jE(A))

is the identity since ER(A, δEA) = E(A). The component of the counit u on a
primary doctrine P : C op // Pos is uP = (uP , ûP )

EP
op

PR

))
(uP )

op

��
Pos

C op P

55•ûP
��
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where uP : EP
// C is the first projection mapping f : (A, ρ) // (B, σ) to f :A //

B and (ûP )A:PR(A, ρ) �
� //P (A) is the inclusion.

3. Elementary doctrines are coalgebras

In this section we prove the main result of the paper: elementary doctrines
are coalgebras for the comonad associated to the 2-adjunction in the following
proposition.

Proposition 3.1. The adjunction ED � � //> PD
Roo

is a 2-adjunction.

Proof. We must show that, for every elementary doctrine E: Bop // Pos and
every primary doctrine P : C op // Pos, the functor

ED(E,PR)
uP ◦ − // PD(E,P )

is an isomorphism. Since one already knows from [19] that the bijection on the
objects sends f :E // PR to uP ◦f :E // P , it follows that it is an isomorphism
because it is fully faithful.

Write T : PD // PD for the composite LR so that the 2-comonad induced
by the 2-adjunction is (T ,u, jR).

Theorem 3.2. The canonical comparison

ED
� r

$$

>

K // PDT

zz >
PD

R
dd

::

is a 2-isomorphism.

The comparison 2-functor K: ED // PDT maps an elementary doctrine E

to the coalgebra jE = (jE , ĵE):E // T E.
The rest of the section is devoted to proving the theorem.

Lemma 3.3. The comparison 2-functor K: ED // PDT is surjective on ob-
jects.

Proof. Consider an object (P,g) in PDT . We first show that the fact that the
coalgebra map g:P // P T is a section of the counit uP :P T // P suffices to
conclude that P is elementary. Since uPg = idP , for every object A one has

gA = (A, δP
R

gA ) for some P -equivalence relation δP
R

gA ∈ (A×A), and also

(ûP )gAĝA = idPA. (2)

9



For every f :A // B in C , it is uPg(f) = f ; hence

f : (A, δP
R

gA ) // (B, δP
R

gB ) . (3)

Since (ûP )gA:PR(A, δP
R

gA ) // PA is the inclusion, it follows from (2) that

PR(A, δP
R

gA ) = PA (4)

and
ĝA = idPA. (5)

The identity (4) amounts to say that every object in PA is descent data for

δP
R

gA , establishing condition (a) in Proposition 2.5. Condition (b) holds since

δP
R

gA is a P -equivalence relation. Condition (c) is a consequence of the fact
that g preserves products. Indeed, for A and B in C , the underlying arrow of
the iso 〈gpr1,gpr2〉: g(A × B) // gA × gB is the identity on A × B because
of (3). Hence the underlying arrow of its inverse is the identity too, that is

to say δP
R

g(A×B) ≥ δP
R

gA � δP
R

gB . Hence P is elementary by Proposition 2.5, and

δPA = δP
R

gA by Remark 2.6. So g = jP which, together with (5), yields g = jP as
required.

Lemma 3.4. For elementary doctrines E,E′, the functor

KE,E′ : ED(E,E′) //PDT (jE , jE′).

is an isomorphism.

Proof. The functor KE,E′ is clearly faithful. It is also full since ED is a 2-full
subcategory of PD. For any 1-cell f :E // E′, it is Kf = f , hence K is clearly 1-
faithful and we are left to show that a homomorphism of coalgebras f : jE // jE′
is also a 1-cell f :E // E′ in ED. By Corollary 2.7, it is enough to show that,
for every object A,

f̂A×A
(
δEA
)

= 〈fpr1, fpr2〉∗
(
δE
′

fA

)
.

Since f is a homomorphism of coalgebras we have

fT ◦ jE = jE′ ◦ f and f̂A =
(
ĵE′
)
fA
◦ f̂A =

(
f̂T
)
jEA
◦
(
ĵE

)
A

=
(
f̂T
)
jEA

.

Notice that fT is a 1-cell in ED and that δE
R

jE(A)
=
(
ĵE

)
A×A

(
δEA
)

= δEA , and

10



similarly δE
′R

jE(fA)
= δE

′

fA
. Hence

f̂A×A(δEA) =
(
f̂T
)
jEA×jEA

(
δE
R

jE(A)

)
= 〈fT (jEpr1), fT (jEpr2)〉∗

(
δE
′R

jE′ (fA)

)
= 〈fT (jEpr1), fT (jEpr2)〉∗

(
δE
′

fA

)
= 〈fpr1, fpr2〉∗

(
δE
′

fA

)
where in the first and the last steps we used the fact that jE preserves chosen
products since δEA×A = δEA � δEA by Remark 2.6.

This concludes the proof of Theorem 3.2.

Remark 3.5. It is also possible to prove that the comonad T is KZ, see [9].

4. Elimination of imaginaries

Recall from Poizat [22] that a structure A in a possibly multi-sorted language
L has uniform elimination of imaginaries if, for every formula ρ with at
most the free variables x and x′, which we may write ρ(x, x′), such that

A |= ‘ρ is symmetric and transitive’,

there is a formula φ(x, y) such that

A |= ‘φ is a functional relation’

A |= ∀x:A ∀x′:A [ρ(x, x′)↔ ∃y:B (φ(x, y) ∧ φ(x′, y))] .

A theory T in a possibly multi-sorted language L with equality has uniform
elimination of imaginaries if every model of T has uniform elimination of
imaginaries. A result in [6, Theorem 4.4.2] ensures that T has uniform elimin-
ation of imaginaries precisely when, for every formula σ(x, y) such that

T ` ‘σ is reflexive, symmetric and transitive’ (6)

there is a formula φ(x, z) such that

T ` ∀y:A∃!z:B ∀x:A (σ(x, y)↔ φ(x, z)) . (7)

The syntactic characterization gives an interesting extension of the notion
of uniform elimination of imaginaries to any theory in intuitionistic first order
logic.
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Definition 4.1. Let T be an intuitionistic first order theory. We say that T
has uniform elimination of imaginaries if, for every formula σ(x, y) such
that (6) holds, there is a formula φ(x, z) such that (7) holds.

We can apply the results in the previous section to complete any intuitionistic
theory T to one with uniform elimination of imaginaries as follows.

Recall from [15, 20, 21] how theories and doctrines are related. As detailed in
[15, Example 2.2], for a given theory T , consider the first-order doctrine PT as-
sociated to T whose base category consists of contexts and term substitutions,
and whose fibre over a context is the Lindenbaum-Tarski algebra of well-formed
formulas in that context. As in [4, Section 8.2.1], consider also the category
Mod(T ) of models M of T and elementary homomorphisms f :M // N, i.e. f
is a homomorphism on the underlying algebras such that for each well-formed
formula α in L, the map f preserves the interpretation of α, i.e. for every
〈m1, . . . ,mi〉,

if 〈m1, . . . ,mi〉 ∈ αM, then 〈f(m1), . . . , f(mi)〉 ∈ αN.

It is easy to see that the category Mod(T ) is equivalent to the hom-category
FOD(PT ,P) on the 1-cell into the first-order doctrine P: Set op // Pos

Mod(T ) ∼= FOD(PT ,P).

Conversely, for a first-order doctrine P , let ThP be the internal language of P
as in [21]. Similarly, Mod(ThP ) ∼= FOD(P,P).

One word of warning: when T has equality, one can consider models where
the equality predicate is interpreted as the diagonal. If Mod=(T ) denotes the full
subcategory of Mod(T ) on models where the equality predicate is interpreted
as the diagonal, and if P is an elementary first-order doctrine (i.e. a first order
hyperdoctrine in the sense of [21]), then the isomorphisms above restrict to
isomorphisms

Mod=(T ) ∼= HD(PT ,P) Mod=(ThP ) ∼= HD(P,P).

Theorem 4.2. Given an intuitionistic theory T , consider the doctrine (PT )R

and write T for the theory Th(PT )R associated to the doctrine (PT )R. Then T
has uniform elimination of imaginaries in the sense of Definition 4.1.

Proof. The sorts of T are of the form (a, ρ) where a:A and ρ is a formula in the
variables a, a′ with also a′:A. So a formula σ(x, x′), where x, x′:(a, ρ), is such
that

T ` ‘σ is reflexive, symmetric and transitive’

precisely when [σ(x, x′)] ∈ (PT )R((a, ρ)×(a, ρ)) is a (PT )R-equivalence relation.
Hence σ is descent data for ρ and we can pick (a, σ) as B and σ as φ in (7). So
the consequence in (7) becomes

T ` ∀y:(a, ρ)∃!z:(a, σ)∀x:(a, ρ) (σ(x, y)↔ σ(x, z)) (8)

which is clearly provable—note that the two occurrences of σ in (8) are in
different fibres of (PT )R.
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Recall that, for a set A and an equivalence relationR on A, the inf-semilattice
PR(A,R) consists of those subsets S of A which are invariant with respect to
R, i.e.

if a′ R a ∈ S, then a′ ∈ S.

The base category EP of the doctrine PR is the category of equivalence rela-
tions and relation-preserving functions. Consider the 1-cell q = (q, q̂): PR //

P in HD whose functor q: EP
// Set takes f : (A,R) // (A′, R′) to the in-

duced function f ′:A/R // A′/R′ on the quotient sets, while the monotone
function (q̂)(A,R): P

R(A,R) // P(A/R) sends S ∈ PR(A,R) to the set{
[a] ∈ A/R

∣∣ a ∈ S }. It is easy to check that (q̂)(A,R) is an isomorphism.

Proposition 4.3. For every first-order doctrine P , the functor

FOD(P,P)
RP,P // HD(PR,PR)

q ◦ − // HD(PR,P)

Mod(ThP ) //
o

Mod=(ThPR)

o (9)

applies the category of models of P into the category of models of PR. Moreover,
if P is elementary, then the functor precomposition with jP :P // PR

HD(PR,P)
− ◦ jP // HD(P,P)

Mod=(ThPR) //
o

Mod=(ThP )

o
(10)

is an equivalence of categories.

Proof. Let P be a hyperdoctrine. Since every 1-cell f :P //P in ED factors as

P
f

//

f

''

jP
��

P

jP
��

idP

//P

PR

fR
//PR

q

==

the composition

HD(P,P) �
� // FOD(P,P)

(q ◦ −)RP,P // HD(PR,P)
− ◦ jP // HD(P,P)

is naturally isomorphic to the identity. This shows that − ◦ jP is full and
essentially surjective. It remains to prove its faithfulness. Let f ,g:PR //P be
in HD, consider two parallel 2-cells θ, γ: f ⇒ g and suppose θ ◦ jP = γ ◦ jP . So
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the following diagram of sets and functions commutes

f(A, δA)

f(π)

��

f(π)

��

θ(A,δA) = γ(A,δA) // g(A, δA)

g(π)

��

g(π)

��
f(A, ρ) γ(A,ρ)

// g(A, ρ)

f(A, ρ)
θ(A,ρ)

// g(A, ρ)

where clearly π = idA: (A, δA) // (A, ρ) is such that >(A,ρ) ≤

EPR
π (>(A,δA))

where

EPR
π is the left adjoint to π∗ = PR(π) as in Remark 2.3. Since f is in

HD, the functor f̂(A,ρ) preserves the top and left adjoints. Hence

f(A, ρ) = >f(A,ρ) ⊆

EP
f(π)

(>f(A,δA)) = f(π)
[
f(A, δA)

]
which proves that f(π) is surjective. Therefore θ(A,ρ) = γ(A,ρ).

Reading Proposition 4.3 for a doctrine of the form PT where T is a multi-
sorted theory (not necessarily with equality), one sees that the functor (9) en-
sures that every model of the original theory T can be turned functorially into
a model of the theory T = Th(PT )R , which uniformly eliminates imaginaries by
Theorem 4.2. Moreover, when T has equality, the functor in (10) ensures that
every model of T can be expanded to a model of T , and every model of T is
completely determined by its reduct to T .

5. Comparison with Shelah’s T eq

The construction of T in Section 4 is a radically different, simpler character-
isation of Shelah’s (−)eq in [24] than the one given in [5]. To see this, let T be
an intuitionistic theory in a possibly multi-sorted language L. In [5] it is proved
that, if T is classical (i.e. T ` α ∨ ¬α for all well-formed formulas α in L), has
equality and

T ` ∃x:A x = x for every sort A in L

T ` ∃x:A0 ∃y:A0 x 6= y for some sort A0 in L
(11)

then T eq coincides with the theory associated to the pretopos completion of the
syntactic category of the theory T as in [18]. Recall from [18, Section 8.2] that
the syntactic category RT of T consists of

objects: pairs 〈~x, φ〉 where ~x is a context in L and φ is a well-formed formula
in context ~x;
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arrows: an arrow [θ]: 〈~x, φ〉 // 〈~y, ψ〉 is an equivalence class of formulas in a

context ~x′, ~y′ with appropriate distinct variables, such that θ is a functional
relation.

It is denoted as T in [5, Section 4] and computed as EF (PT )c in [13, Section 3].
From Theorem 4.2, we can obtain a similar result for general intuitionistic

first order theories. First we need a strengthening of [1, Lemma 2.2(i)] when
an ex/reg completion produces a pretopos. In order to state the result, recall
that an object B in a regular category is well-supported if the unique arrow
B

� ,21 is regular epic.

Proposition 5.1. Let A be a coherent category, that is, a regular category with
pullback-stable unions of subobjects. Suppose that

(i) for every object A in A, there is a mono m: A // //B into a well-supported
object B;

(ii) there is a decidable object D in A such that the complement of its diagonal
is well-supported.

Then the ex/reg completion of A

A
Γex/reg // Aex/reg

is also the pretopos completion of A as a coherent category.

Proof. Is in the Appendix.

Remark 5.2. The two conditions in the hypotheses of Proposition 5.1 easily
compare with those in (11): condition 5.1(i) is just a categorical reformulation
of the first in (11) read in the syntactic category. More interestingly, condition
5.1(ii) has a global requirement about the object D that cannot be spotted in
the classical case.

As a consequence of Proposition 5.1, we know that the theory T eq for T
a theory in classical first order logic is the theory associated to the subobject
doctrine of (RT )ex/reg. In turn the ex/reg completion has a neat algebraic
description in terms of doctrines as Cex/reg = EF (SubC )R , see [16, Example 3.2].

In conclusion, the characterisation of T eq in [5] is the theory of the subobject
doctrine of the category

EF (
Sub

(EF (PT )c)

)R .
But there is an equivalence between (PT )R and a subobject doctrine if and only
if PT validates a rule of choice, see [17, Proposition 4.11].
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A. Appendix

The appendix is devoted to the proof of Proposition 5.1 which relies on a
technical result about coherent categories.

Proposition A.1. Let A be a coherent exact category. Suppose that

(i) for every object A in A, there is a mono m: A // //B into a well-supported
object B;

(ii) there is a decidable object D in A such that the complement of its diagonal
is well-supported.

Then A is a pretopos.

We defer the proof of the technical result to after the proof of Proposition 5.1.

Proof of Proposition 5.1. It is well-known that the ex/reg completion of a
coherent category is coherent and the embedding Γex/reg: A // Aex/reg is a
coherent functor, see [8, Corollary 3.3.10]. We are left to show that, when
A satisfies conditions 5.1(i)-(ii), the exact category Aex/reg is in fact a pretopos,
as the required universal property follows from the fact that Γex/reg is universal
among regular functors into exact categories. To this aim, it is enough to
show that the ex/reg completion preserves conditions 5.1(i) and (ii) and apply
Proposition A.1.

Recall from [3, Section 2.3] that objects of Aex/reg are equivalence relations
R // //A×A in A and that an arrow from r: R // //A×A to s: S // //B ×B is
a relation f : F // //A×B such that

f · r = f = s · f, r ≤ fo · f and f · fo ≤ s,

where fo is the converse of the relation f and f · g denotes relational com-
position. The embedding Γex/reg: A // Aex/reg maps an object A in A to
the identity relation ∆A := 〈idA, idA〉 and an arrow f :A // B to its graph
〈idA, f〉: A // //A×B . We know it preserves the regular structure; in particu-
lar, it takes a well-supported object to a well-supported object.
Ad (i). Let r: R // //A×A be an arbitrary object in Aex/reg. By hypothesis,
there is a mono m: A // //B into a well-supported object B in A . In A con-
sider the join s: S // //B ×B of the subobjects (m × m)r: R // //B ×B and
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∆A: B // //B ×B which is clearly an equivalence relation, say j1: R // //S and
j2: B // //S are the two inclusions into the join. Moreover the diagram

R
��

r
��

j1 // S
��
s
��

B
j2oo

��
∆B
��

A×A m×m // B ×B B ×B
idB × idBoo

produces a mono from r into s and a factor from ∆B into s of the terminal
arrow which ensures that s is well-supported in Aex/reg.
Ad (ii). Immediate since Γex/reg: A // Aex/reg preserves finite unions and finite
intersections of subobjects.

Proof of Proposition A.1. To see that A is extensive, consider first that, in
a coherent category, any disjoint sum that happens to exist is universal in the
sense of [2, Definition 2.10] because a disjoint sum is also a disjoint union of
subobjects, and these are stable under pullback. So, by [2, Proposition 2.14] it
is enough to prove that A has disjoint sums. And, by hypothesis (i) it suffices to
do so just for well-supported objects. So let A and B be well-supported objects.
LetD be a decidable object such that, in the complement ¬∆D: Dc // //D ×D of
the diagonal ∆D: D // //D ×D , the object Dc is well-supported. In the diagram

KprA

k2
��

k1
��

// // KprA ∪KprB

s2
��

s1
��

KprB
oooo

k′2
��

k′1
��

D ×A×B

prA_��

//∆D × idA × idB // D ×D ×A×B

q
_��

Dc ×A×B

prB_��

oo¬∆D × idA × idBoo

A
iA // Q B

iBoo

where the side columns are kernel pairs of regular epis because D, Dc, A
and B are well-supported. The join is taken in the poset of subobjects of
(D×D×A×B)2; it is an equivalence relation as the the (partial) equivalence
relations KprA

// //(D ×D ×A×B)2 and KprB
// //(D ×D ×A×B)2 are dis-

joint. So, taking the coequalizer of KprA ∪KprB
////D ×D ×A×B , all columns

are exact; now one easily checks that the bottom row is a disjoint sum.
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