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Do we need to adjust for interim analyses
in a Bayesian adaptive trial design?
Elizabeth G. Ryan* , Kristian Brock, Simon Gates and Daniel Slade

Abstract

Background: Bayesian adaptive methods are increasingly being used to design clinical trials and offer several
advantages over traditional approaches. Decisions at analysis points are usually based on the posterior distribution
of the treatment effect. However, there is some confusion as to whether control of type I error is required for
Bayesian designs as this is a frequentist concept.

Methods: We discuss the arguments for and against adjusting for multiplicities in Bayesian trials with interim
analyses. With two case studies we illustrate the effect of including interim analyses on type I/II error rates in
Bayesian clinical trials where no adjustments for multiplicities are made. We propose several approaches to control
type I error, and also alternative methods for decision-making in Bayesian clinical trials.

Results: In both case studies we demonstrated that the type I error was inflated in the Bayesian adaptive designs
through incorporation of interim analyses that allowed early stopping for efficacy and without adjustments to
account for multiplicity. Incorporation of early stopping for efficacy also increased the power in some instances. An
increase in the number of interim analyses that only allowed early stopping for futility decreased the type I error,
but also decreased power. An increase in the number of interim analyses that allowed for either early stopping for
efficacy or futility generally increased type I error and decreased power.

Conclusions: Currently, regulators require demonstration of control of type I error for both frequentist and Bayesian
adaptive designs, particularly for late-phase trials. To demonstrate control of type I error in Bayesian adaptive
designs, adjustments to the stopping boundaries are usually required for designs that allow for early stopping for
efficacy as the number of analyses increase. If the designs only allow for early stopping for futility then adjustments
to the stopping boundaries are not needed to control type I error. If one instead uses a strict Bayesian approach,
which is currently more accepted in the design and analysis of exploratory trials, then type I errors could be
ignored and the designs could instead focus on the posterior probabilities of treatment effects of clinically-relevant
values.

Keywords: Bayesian, Adaptive design, Type I error, Interim analysis, Multiple comparisons, Randomised controlled
trial, Multiplicities
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Background
The type I error rate, which is the probability of reject-
ing the null hypothesis when no difference truly exists
between treatment arms, is often an important quantity
in randomised controlled trials (RCTs). When null hy-
potheses are repeatedly tested they will eventually be
rejected with a probability of 1, and thus the probability of
making a type I error increases. Multiplicities can arise in
RCTs by testing multiple hypotheses (e.g., multiple end-
points, treatment group comparisons, or subgroup ana-
lyses) or from repeatedly testing the same hypothesis over
time (e.g., sequential designs). Here we focus on the latter
where multiplicities arise from performing interim ana-
lyses on accumulating data in an RCT.
Demonstration of the control of type I error at a pre-

specified level is generally a prerequisite for a clinical
trial design to be accepted by regulators, particularly for
late phase trials. Frequentist adaptive designs, such as
group sequential designs, typically perform corrections
to the stopping boundaries to ensure that the overall
type I error rate is maintained at some specific level, e.g.,
5% (see [1, 2]). The statistical theory is well developed to
control the type I error rate for frequentist adaptive
designs.
Bayesian methods are increasingly being used to de-

sign adaptive trials (e.g., [3–5]). Rather than making in-
ference by using p-values calculated from test statistics
within the null hypothesis testing framework, Bayesian
approaches can instead focus on the posterior probabil-
ity of clinically relevant treatment effect values, for ex-
ample, the probability the relative risk (RR) is < 1. In
Bayesian adaptive designs, efficacy and futility criteria
can be based on the probability of treatment effects,
given the observed data. For example, one could stop
for efficacy if the posterior probability that the hazard
ratio (HR) was < 1 was above 90%, i.e., Pr (HR <
1|data) > 0.9. Similarly, one could stop for futility if Pr
(HR < 1|data) < 0.1.
Those who routinely work with Bayesian adaptive de-

signs, particularly in later phase trials, will be familiar
with the regulatory requirements and approaches that
can be used for type I error control for Bayesian adaptive
designs. (e.g., [6–9]). However, some confusion remains
amongst statisticians newer to these approaches and tri-
alists/clinicians as to whether control of type I error is
required for Bayesian adaptive designs, since this is typ-
ically considered a frequentist concept, and whether any
adjustments need to be made to account for interim
analyses/multiplicities. The aim of this work is to clarify
if and when adjustments are required in Bayesian adap-
tive designs to control type I error by accounting for the
multiple analyses that may be performed and decisions
made. We will also use several illustrative case studies to
show how the performance of Bayesian adaptive designs

can be affected by incorporating interim analyses, in
terms of their “type I error” and “power”, when the stop-
ping boundaries are not adjusted to account for multiple
analyses. In this work we will only address multiplicities
that arise from interim analyses where a single outcome
is repeatedly measured over the course of an RCT.

Methods
Current practice for Bayesian RCTs
The Bayesian approach, which is conditional on the data
observed, is consistent with the strong likelihood
principle. The final analysis can ignore the results and
actions taken during the interim analyses and focus on
the data actually obtained when estimating the treatment
effect (see, for example, [10, 11]). That is, inferential cor-
rections, e.g., adjustments to posterior probabilities, are
not required for multiple looks at the data and the pos-
terior distribution for the parameter of interest can be
updated at any time. This is appealing to clinicians who
are often confused about why previous (or multiple con-
current in the case of multiple arms/outcomes) inspec-
tions of the trial data affect the interpretation of the final
results in the frequentist framework where adjustments
to p-values are usually required. The stopping rule in a
Bayesian adaptive design does not play a direct role in a
Bayesian analysis, unlike a frequentist analysis. One can
also calculate several probabilities from the posterior
without the need for adjustment for multiple compari-
sons, such as: the probability RR < 0.5, 0.75, 0.9, 1 and
the probability that the absolute risk difference is < 0. In
decision making however, the Bayesian approach can be
just as vulnerable to multiplicities through performing
interim analyses as the frequentist approach for control-
ling type I error [12]. Corrections may be required to
the Bayesian stopping boundaries in the design phase to
assist with decision making and demonstrate that the
Bayesian design has good frequentist operating charac-
teristics (i.e., high power and acceptable type I error).
Whilst the long-run frequency behaviour of sequential

testing procedures is irrelevant from the strict Bayesian
perspective, long-run properties have been established as
being important in the clinical trial setting, particularly
for late phase trials, as there can be high costs to making
incorrect decisions [6, 13, 14]. Confirmatory trials will
have to persuade, amongst the normal sceptical scientific
audience, the competent authorities for healthcare regu-
lation. Depending on the jurisdiction, this may include
the European Medicines Agency (EMA), the US Food
and Drug Administration (FDA), or the Medicines and
Healthcare products Regulatory Agency (MHRA). One
of the core functions of health-care regulators is to pre-
vent those that market interventions from making spuri-
ous claims of benefit. For this reason, adequate control
of type I error is one of the perennial concerns when
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appraising the results of confirmatory clinical trials.
Thus in confirmatory trials, demonstration that the type
I error is controlled is likely to be required.
Simon [7] acknowledged that multiplicity issues are of

importance in both the frequentist and Bayesian frame-
works, and that problems in operating characteristics do
not disappear by using Bayesian methods. Freedman and
Spiegelhalter [8] also note, “More frequent applications
of the Bayesian rule during the trial would, however,
change the frequentist properties of the monitoring
scheme.” Depending on the choice of design or stopping
boundaries, Bayesian interim monitoring may violate the
weak repeated sampling principle [15], which states that,
“We should not follow procedures which for some possible
parameter values would give, in hypothetical repetitions,
misleading conclusions most of the time”. Thus, using
these views, the Bayesian designs must be chosen by
considering problems of multiplicity resulting from se-
quential monitoring of accumulating results.
In the clinical trial setting Bayesian inference is often

mixed with non-Bayesian decision making. Decisions at
the analyses are usually made by comparing some sum-
mary of the accumulated data, such as the posterior
probability that the treatment effect exceeds a particular
value, to a pre-specified boundary. For example, a Bayes-
ian adaptive trial could allow for early stopping for effi-
cacy or futility. At each interim analysis, the posterior
probability of having a RR < 1 (indicating benefit) is cal-
culated based on the accumulated data. If that probabil-
ity is sufficiently high, i.e., above a pre-specified
threshold value bu, then the trial may stop early for effi-
cacy. If the probability is very low, i.e., below a pre-
specified value bL, then the trial may stop early for futil-
ity. If the probability falls between these two values bL
and bu then the trial may continue recruiting. Clinicians,
statisticians and funders will often want to know how
often a given design will conclude in favour of a particu-
lar treatment, or the effect of a given stopping rule on
the operating characteristics.
Although the type I error and power are frequentist

concepts by definition, we can calculate something
analogous to these quantities for any pre-specified deci-
sion rule, whether it is frequentist or Bayesian. Many
Bayesian adaptive trial designs are required by funders
and regulatory agencies to demonstrate adequate control
of error rates (e.g., [16, 17]). For some Bayesian designs
with certain prior and likelihood combinations the type I
error can be computed analytically. In practice however,
Bayesian designs usually rely on simulations to calculate
the type I error. This is achieved by determining how
frequently the Bayesian design incorrectly declares a
treatment to be effective or superior when it is assumed
that there is truly no difference, for the given decision
criteria/stopping boundaries. The power for a specific

treatment effect can be calculated as the proportion of
simulations that declare the trial to be “successful” based
on the given decision criteria when the target treatment
effect is assumed to be the true value. This approach has
been recommended by the FDA [17] and has been used
in practice for Bayesian adaptive designs (e.g., [18, 19]).
These simulations should be performed in the planning
stage of a Bayesian adaptive design and corrections may
be made to the stopping boundaries if required during
the design process. In the analysis stage of the Bayesian
adaptive design, no further adjustments are required to
account for the previous (interim) analyses that have
been performed.
If one wishes to control error rates, such as the prob-

ability of declaring a treatment arm to be superior when
there is truly no difference between the treatments, then
choice of stopping boundaries is important in Bayesian
adaptive designs. This was demonstrated by Rosner and
Berry [6], in which they stated, “If one feels uncomfort-
able with the number of rejections, especially early in the
trial, one might consider varying the posterior probability
required for stopping accrual at each interim analysis.”
Simulation-based approaches have often been used to
tune stopping boundaries in Bayesian adaptive designs
to ensure acceptable type I error, e.g., 2.5% 1-sided type I
error or 5% 2-sided type I error (see for example [18–21]).
Theoretical and numerical approaches have also been pro-
posed to find the optimal stopping boundaries for Bayesian
adaptive designs which control the type I error through use
of alpha-spending functions (e.g., [8, 9, 22–24]).
Below we use two simulations studies to demonstrate

the effect of performing an increasing number of interim
analyses on the operating characteristics of Bayesian
adaptive designs when no adjustments are made to the
stopping boundaries. The effect of an increasing number
of interim analyses has previously been shown (e.g., [6,
17]). These results are intended to be illustrative exam-
ples to support our arguments.

Case study 1 – time-to-event outcome
Consider a two-arm RCT with one Bayesian analysis
where the planned approach is to produce a posterior
distribution for a HR. Using a normal-normal conjugate
analysis for the log HR, we can obtain an expression for
the posterior distribution of the log HR directly without
the need to simulate data from some time-to-event dis-
tribution. Thus, we can sample log HRs from an as-
sumed normal distribution. We assume a target HR =
0.7 with 200 total events required.
Now, consider a trial decision criterion for success of

Pr(HR < 1|Data) > 0.9. That is, we require that the pos-
terior probability that the HR < 1 is greater than 0.9 at
the final analysis (at 200 events) for the trial to be de-
clared successful.
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Initially we explore the operating characteristics of a
design that does not perform any interim analyses. We
then add in an interim analysis at half of the observed
events (i.e., 100 events) in which the trial may stop early
for futility if Pr(HR < 1|Data) < 0.5. That is, we require
that the probability that the HR < 1 is greater than 0.5 to
continue with the trial. The same decision criteria for
trial success (as above) is used at the final analysis (if the
trial continues to 200 events).
Then we consider to instead have an interim analysis

at half of the observed events in which the trial may stop
early for superiority of the intervention if Pr(HR < 1|
Data) > 0.9. We use the same criteria at the analysis at
200 events (if the trial does not stop early) (as above) for
determining whether the trial was successful.
The operating characteristics for each design were ob-

tained via simulation using a custom written script in R
(version 3.6), which is available in Additional file 1. We
consider a ‘null’ scenario of HR = 1 as well as HRs of 0.9,
0.8 and 0.7. We simulate 1 million trials for each true
HR. We count the number of trials that were declared
to be successful. “Successful” trials are those that meet
the decision criteria for success mentioned above; these
could be trials that stopped at the interim analysis for
superiority or continued recruiting until 200 events had
been observed. The proportion of trials that were suc-
cessful when assuming a HR = 1 provide the simulated
type I error rate. The power is provided by the propor-
tion of successful trials when HR = 0.7 was assumed. For
simplicity, a vague prior was used for the log HR, which
had a normal distribution with a mean of 0 and a vari-
ance of 10,000.

Case study 2 – binary outcome
Here we consider incorporating interim analyses into
the Beta Agonist Lung injury TrIal 2 (BALTI-2 [25])
which compared the effect of intravenous infusions of
salbutamol with placebo on 28-day mortality in patients
with acute respiratory distress syndrome (ARDS). The
BALTI-2 trial had a target sample size of 1334 patients
(667 each arm). The trial assumed a control arm rate of
44% and aimed to detect a 9% reduction in 28-day mor-
tality with 90% power. A two-sided significance level of
0.05 was used and 3% dropout was assumed.
In the Bayesian designs we are interested in incorpor-

ating interim analyses that allow early stopping for effi-
cacy and/or futility and will examine the impact that an
increasing number of interim analyses has on the de-
signs’ operating characteristics. Since we are interested
in demonstrating superiority of the intervention over the
control, the designs will be constructed as one-sided su-
periority studies with a target type I error of 2.5%. We
define a “successful” trial as one which declares superior-
ity of the intervention with a high probability.

We began by exploring the operating characteristics of
a fixed design with no interim analyses. We then exam-
ined the operating characteristics of designs which had
between 1 and 10 interim analyses that were evenly
spaced by the number of patients recruited; see Fig. 1
and Additional file 2 for the timings of the analyses. We
also looked at designs with 25 and 50 interim analyses
(evenly spaced by the number of patients recruited) to
explore the limiting behaviour of the type I error and
power. We explored designs that allowed for early stop-
ping for efficacy only; early stopping for futility only; and
either early stopping for efficacy or futility.
Stopping early for efficacy was based on the posterior

predictive probability of trial success at the current sam-
ple size, after accounting for uncertainty in enrolled pa-
tients that had not completed follow-up. This is denoted
by Pcurr. The trial was stopped early for efficacy if Pcurr >
0.99. Stopping early for statistical futility was based on
the posterior predictive probability of trial success at the
maximum sample size, which is denoted by Pmax. We as-
sumed the maximum sample size was the target sample
size in the original frequentist trial design (N = 1334).
The trial was stopped early for futility if Pmax < 0.10. The
same stopping boundaries were used at each interim
analysis. Patients who had not completed their 28-day
follow-up at an interim analysis had their response simu-
lated from the posterior distribution.
At the final analysis the trial was declared successful if

the posterior probability that the intervention arm has a
lower 28-day mortality rate is > 0.98, i.e., Pr(θintervention<
θcontrol ∣ data) > 0.98, where θintervention and θcontrol are
the 28-day mortality rates in the intervention and con-
trol arms, respectively. Otherwise the trial was not
successful.
The operating characteristics were obtained by simu-

lating trials in the Fixed and Adaptive Clinical Trial
Simulator (FACTS) program (version 6.2 [26]). For each
design we simulated 10,000 trials, assuming particular
true 28-day mortality rates for each arm. The type I
error was calculated from the simulations under the null
hypothesis scenario of no difference (assuming 44% 28-
day mortality in both arms), and was estimated as the
proportion of such simulations that falsely declared the
intervention superior. The power was calculated as the
proportion of simulations that concluded that the inter-
vention was superior under the target difference of 9%.
For simplicity, we used non-informative prior distribu-
tions for the primary outcome rate for each arm that
were essentially a uniform distribution.

Results
Case study 1 – time-to-event outcome
The operating characteristics for each design are given
in Fig. 2. The type I error rate is reduced by including
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an interim analysis to assess for futility; however the type
II error rate also increased resulting in a lower power for
the trial. When early stopping for efficacy was included
in the design the type I error rate increased, but the
power also increased. Thus through this simple example,
the impact of incorporating an interim analysis on the
operating characteristics is demonstrated.
For the design that only allows early stopping for effi-

cacy, if we instead use more stringent efficacy stopping
boundaries we can reduce the type I error rate. For ex-
ample, if we allow stopping for efficacy at the interim
analysis if Pr(HR < 1|Data) > 0.95 and also use this cri-
teria at the final analysis (at 200 events) for declaring the
trial to be successful, then the type I error decreases to
9.8% (from 19%).

Case study 2 – binary outcome
The operating characteristics for each design are pre-
sented in Fig. 3 and Table A2 of Additional file 2. With-
out adjustment of the stopping boundaries, the type I
error increased above the desired level of 2.5% as more
interim analyses were included that allowed early stop-
ping for efficacy only (Fig. 3a); the power had little

variation with the number of interim analyses for these
designs (Fig. 3b). When early stopping for futility was in-
stead permitted at the interim analyses, the type I error
rate generally decreased (Fig. 3c), as well as the power
(Fig. 3d). When both early stopping for efficacy or futil-
ity were permitted in the designs, the type I error gener-
ally increased, but fluctuated with the number of interim
analyses (Fig. 3e); the power generally decreased for
these designs (Fig. 3f).

Discussion
Here we have shown through two illustrative examples
how a Bayesian adaptive design can inflate the type I
error rate through incorporation of interim analyses that
allow early stopping for efficacy and do not make adjust-
ments to account for multiplicity. Incorporation of early
stopping for efficacy also increased the power in some
instances. We also showed that not all actions that may
be taken at interim analyses in Bayesian adaptive designs
cause inflation of type I error: interim analyses that only
allowed early stopping for futility decreased the type I
error. It is generally early stopping for efficacy that can
inflate the type I error during the multiple analyses of

Fig. 1 Timings of the interim analyses for the Bayesian designs for the binary outcome case study. The interim analyses occurred once a certain
number of patients had been recruited. Each row represents a different design
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adaptive designs. Therefore, we need not be concerned
with an increasing type I error with the number of in-
terim analyses if they do not allow for early stopping for
efficacy. However, for designs that only allowed early
stopping for futility, an increase in the number of in-
terim analyses led to a decrease in power. Whilst these
results are not new we hope to provide some clarity on
the scenarios in which adjustments need to be made to
stopping boundaries in Bayesian adaptive designs to con-
trol for type I error.
Dmitrienko and Wang [27] and Berry et al. [14] dem-

onstrated that use of a sceptical prior (centred on a
treatment difference of 0) can decrease the type I error
since it “pulls back” the posterior mean if you stop early
for efficacy. Use of sceptical priors has also been recom-
mended by Spiegelhalter et al. [28] to provide Bayesian
designs with good frequentist properties. Whilst inform-
ative priors are useful in smaller early phase studies,
where higher alpha levels are generally permitted, they
are rarely used in confirmatory trials since they can lead
to increased type I error rates if additional adjustments

are not made to the stopping boundaries (e.g., [14, 23]).
Kopp-Schneider et al. [29] demonstrated that strict con-
trol of type I error implies that no power gain is possible
under any mechanism of incorporation of prior informa-
tion. Informative priors that favour an intervention rep-
resent a clash in paradigms between the role of the prior
in a Bayesian analysis and type I error control in the fre-
quentist framework (which requires an assumption of
zero difference). Type I errors are unlikely to be of inter-
est to strict Bayesians, particularly if there is evidence
for a non-zero effect that is represented in an inform-
ative prior.
It has also been recommended that not having interim

analyses “too early” can assist in controlling type I error
(e.g., [30, 31]). For example, in the binary case study
above, if one used a design that only allowed for early
stopping for efficacy with three interim analyses that
were performed at 600, 900 and 1100 patients instead of
334, 667, 1001 patients (as above), then the type I error
is reduced from 2.54 to 2.43%. One could also control
for type I error in designs that allow for early stopping

Fig. 2 Proportion of trials declared successful under a range of true hazard ratios (HR). The designs explored had no interim analysis; 1 interim
analysis that allowed early stopping for futility only; 1 interim analysis that allowed early stopping for efficacy only
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for efficacy by using more stringent stopping boundaries
for earlier interim analyses, as we demonstrated in the
HR case study. Shi and Yin [23] showed that through
careful calibration of the stopping boundaries, Bayesian
sequential designs can maintain the frequentist type I
and II error rates at the nominal levels.
Bayesian stopping rules that do not involve dichotom-

ous decisions, such as sampling until the width of a
credible interval reaches a certain value, do not suffer
from the multiple testing problem of adaptive designs
and one can keep on adding observations until the cri-
teria are met [32]. In this instance, the designer would
need to show that the posterior probabilities are well
calibrated.

An alternative approach – beyond type I errors
Bayesians have often argued that use of type I and II er-
rors are inappropriate since they address the wrong
question and/or are frequentist concepts. Spiegelhalter

et al. [13] notes, “From a Bayesian perspective control of
type I error is not central to making valid inferences and
we would not be particularly concerned with using a se-
quential scheme with a type I error that is not exactly
controlled at a specified level.” The requirement of type I
error control for Bayesian adaptive designs causes them
to lose many of their philosophical advantages, such as
compliance with the likelihood principle, and creates a
design that is inherently frequentist (see [14]). Frequen-
tists calculate the probability of data, not the probability
of an unknown parameter (e.g., treatment effect), and so
the more looks you have the more opportunities you
have for data to be extreme. Bayesians do not calculate
the probability of data, they calculate the probability of
efficacy, and so repeated analyses should not impact the
probability of efficacy. Given the recent discussions to
abandon significance testing [33, 34] it may be useful to
move away from controlling type I error entirely in trial
designs.

Fig. 3 Type I error and Power for Bayesian sequential designs for the binary outcome example: a and b are for designs that only allow early
stopping for efficacy; c and d are for designs that only allow early stopping for futility; e and f are for designs that allow early stopping for either
efficacy or futility. The dotted horizontal line in a, c and e represents a type I error of 2.5%. The type I error (left column) was calculated assuming
both arms had a 28-day mortality of 44%; the power (right column) was calculated assuming 28-day mortality of 35% and 44% in the
intervention and control arms, respectively
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Instead, decisions may be based purely on the poster-
ior (predictive) probabilities of treatment effects and de-
cision boundaries may be chosen using clinically
important values for subsequent decision making (rather
than those that produce suitable type I error; e.g., [28]).
Berry [35] used posterior probabilities for monitoring
without formally pre-specifying a stopping criterion or
sample size. “Type I errors” or incorrect decisions can
arise in the Bayesian setting through the dichotomisation
of trial results into being “successful” or “negative”, for
instance, by using a binding decision rule at the final
analysis for declaring efficacy of the intervention. If we
avoid this dichotomisation and simply report the poster-
ior probability of benefit, then we could potentially avoid
having to specify the type I error of a Bayesian design.
Bayesians have argued that type I errors aren’t the

most interesting or important type of error, and that we
should be more interested in the posterior probability
that the treatment is not effective (e.g., [36]). Posterior
distributions provide a means to estimate the value of
the parameter of interest, conditional on the observed
data, and from this we can obtain a probability of effi-
cacy. Type I errors calculate the probability of data con-
ditional on some assumed fixed value of the parameter
of interest (e.g., treatment effect = 0), which is unlikely
to ever occur exactly. It does not give the probability of
a decision maker’s regret.
Berry et al. [14] acknowledge that in the future trials

may be evaluated using fully Bayesian notions of utilities
and decisions. A fully Bayesian decision-making ap-
proach uses a utility function to determine the actions
to take at each analysis to best achieve the aim of the
trial. That is, you choose the decision with the highest
expected utility. The Bayesian decision theoretic ap-
proach involves averaging over the parameter space and
the unobserved data, rather than assuming a “true” fixed
value for the unknown parameters of interest. The utility
function may contain trade-offs that occur when taking
a particular action, such as cost-effectiveness or efficacy-
toxicity, and so a fully Bayesian decision-theoretic ap-
proach (that uses a Bayesian utility function) does not
require error control of a decision boundary in the trad-
itional sense of type I/II error rates. However, these ap-
proaches are often computationally intensive and have
not often been used in practice (e.g., [37, 38]). Spiegel-
halter and Freedman [39] argue that implicit recognition
of the costs of making errors is a more realistic approach
than a formal Bayesian decision theoretic approach in
which meaningful specification of utilities is speculative.
Currently, late-phase/confirmatory trials which seek to

change practice are required by regulators to demon-
strate control of type I error, whether the trial is de-
signed and analysed in the Bayesian or frequentist
framework. Trialists tend to have more freedom in the

design and analysis of exploratory trials which seek to
gather evidence to maximise the chances that the con-
siderable resources required to run a confirmatory trial
are only invested in the most promising treatments. Ex-
ploratory trials tend to have more relaxed type I error
control requirements and regulators may be more amen-
able to use of a fully Bayesian decision-theoretic ap-
proach for exploratory trials.

Conclusion
If one wishes to demonstrate control of type I error in
Bayesian adaptive designs that allow for early stopping
for efficacy then adjustments to the stopping boundaries
are usually required as the number of analyses increase.
If the designs only allow for early stopping for futility
then adjustments to the stopping boundaries may in-
stead be required to ensure that power is maintained as
the number of analyses increase. If one wishes to instead
take a strict Bayesian view then type I errors could be ig-
nored and the designs instead focus on the posterior
probabilities of treatment effects of particular values.
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