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Coupled and splitting bedload sediment transport models based on a modified 

flux-wave approach  
  

 
Abstract 

 
Numerical modeling of free-surface flow over a mobile bed with predominantly bedload sediment 

transport can be done by solving the shallow water and Exner equations using coupled and splitting 

approaches. The coupled method uses a coupling of the governing equations at the same time step 

leading to a non-conservative solution. The splitting method solves the Exner and the shallow 

water equations in a separate manner, and is only capable of modeling weak free-surface and 

bedload interactions. In the current study, an extended version of a Godunov-type wave 

propagation algorithm is presented for modeling of morphodynamic systems using both coupled 

and splitting approaches. In the introduced coupled method the entire morphodynamic system is 

solved in the form of a conservation law. For the splitting technique, a new wave Riemann 

decomposition is defined which enables the scheme to be utilized for mild and strong interactions. 

To consider the bedload sediment discharge within the Exner equation, the Smart and Meyer-Peter 

& Müller formulae are used. It was found that the coupled solution gives accurate predictions for 

all investigated flow regimes including propagation over a dry-state using a Courant-Friedrichs-

Lewy (CFL) number equal to 0.6. Furthermore, the splitting method was able to model all flow 

regimes with a lower CFL number of 0.3. 

Keywords: Bedload sediment transport; Coupled solution; Flux-wave method; Shallow water 

equations; Splitting technique; Wave propagation algorithm. 

 

1. Introduction 
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The interaction between water flow and sediment transport is a contemporary hydraulic 

engineering problem studied for many problems such as dam-break and multiple fluvial systems. 

Morphodynamic models should at least be able to accurately evaluate the morphological evolution 

of the bed as well as the variations of the water surface. These models can be methodologically 

categorized into coupled and decoupled solutions. For decoupled solutions, only the simplified 

conservation equations are considered, and it is assumed that the rate of morphological variation 

is less important than the hydrodynamic changes (Cao et al., 2002). For coupled solutions of the 

flow field, sediment transport and morphological evolutions are interrelated, and the amount of 

bed changes is considerable (Cao et al., 2004). Physically coupled models are typically based on 

the Shallow Water Equations (SWEs) which can be used to compute the hydrodynamics of the 

flow, and the Exner equation which can be used to evaluate the bedload sediment transport (Castro 

Díaz et al., 2008; Delis & Papoglou, 2008), and the coupled models are considered as capacity or 

equilibrium sediment transport approaches. These sets of equations form a nonlinear system of 

hyperbolic conservation laws that are numerically solved using coupled or splitting methods 

(Canestrelli et al., 2010; Serrano-Pacheco et al., 2012). 

Generally, capacity or equilibrium models such as the Exner equation are considered in the 

capacity regimes, and mainly evaluated based upon local hydrodynamic conditions (Cao et al., 

2011, 2012, 2016). Non-capacity or non-equilibrium models are obtained through mass exchange 

with the bed, comprise spatial and temporal lag effects between transport capacity and flow 

conditions (Cao et al., 2016) and can provide more accurate results for strong interaction taking 

place between the free-surface and bedload sediment flow (Wu et al., 2004, 2018).  

Splitting methods solve the SWEs and the Exner equation in an entirely separate manner (Wu et 

al., 2004). In this approach, the Exner equation is first solved and the resulting bed profile update 
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is used as a source term for the SWEs. This method is relatively easy to code and allows 

minimization of the computational costs, since no additional computation is needed for the 

hydrodynamic phase. However, one major limitation of these methods is that they can only be 

applied in cases of weak or mild sediment transport and surface wave interactions. This is mainly 

due to the assumption of a constant total depth which is not sufficient for modeling strong 

interactions taking place between the free-surface and bed sediment (Wu, 2007).  

The coupled approach solves the entire set of governing equations, i.e. the hydrodynamic and 

morphodynamic equations, simultaneously at each time step, thus, is more stable than the splitting 

approaches (Benkhaldoun & Seaïd, 2011; Canestrelli et al., 2010; Castro Díaz et al., 2008; Hudson 

& Sweby, 2005). Moreover, this approach is capable of readily approximating strong interactions 

(Cordier et al., 2011). However, a main drawback of the coupled method is that a conservative 

formulation is not available, and therefore, the solution is only developed based upon non-

conservative schemes which are notorious for producing incorrect shock wave speeds in some 

situations (Canestrelli et al., 2010; Hudson & Sweby, 2005; Siviglia et al., 2008)  

Various numerical methods have been developed for solving coupled morphodynamic systems, 

among which the finite-volume method has been widely used (e.g. Castro Díaz et al., 2008; Delis 

& Papoglou, 2008; Serrano-Pacheco et al., 2012). Over recent decades, different non-conservative 

formulations of finite-volume Godunov based methods have been extended to the coupled solution 

of morphodynamic systems. Wu and Wang (2008) implemented a one dimensional (1D) sediment 

transport model which handles both suspended and bedload sediment discharge within the 

computations. Fraccarollo et al. (2003) devised a modified version of the Harten-Lax-van Leer 

(HLL) scheme for intense sediment transport simulations. A more accurate model was introduced 

by Rossati and Fraccarollo (2006) who used a well-balanced coupled method with a new strategy 
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for the treatment of non-conservative fluxes. This approach was further developed by Murrillo and 

García-Navarro (2010) who defined a coupled Jacobian matrix (CJM) method using a triangular 

mesh for the simulation of bedload sediment transport. Although the proposed model was accurate, 

it was proven to be computationally expensive for real morphodynamic problems (Juez et al., 

2014). To overcome this issue, Juez et al. (2014) introduced a first-order scheme which mainly 

solves the two dimensional (2D) morphodynamic and hydrodynamic phases in a weakly coupled 

form. A strategy was developed to consider all required waves involved in the Riemann problem, 

similar to the coupled solution. From a numerical point of view, Godunov methods provide more 

reliable results for morphodynamic systems, and are able to precisely capture the shocks and other 

discontinuities within the solution. The main shortcoming of these solvers is the existence of non-

conservative fluxes which cause complexity in eigenvalue calculations (Canestrelli et al., 2010; 

Hudson & Sweby, 2005; Siviglia et al., 2008). 

The wave propagation algorithm has been successfully applied for modeling various fluid flows 

including gas-dynamic problems (Bale et al., 2002), flooding over complex bathymetry deviations 

with wet/dry front propagation (George, 2008) and water hammer problems (Mahdizadeh et al., 

2018; Mahdizadeh, 2019). The methods used in these studies are generally Godunov-type 

methods, which in contrast to other Riemann solvers that directly use interface fluxes, re-average 

the wave arising in the Riemann solutions into neighbouring finite volume computational cells 

(George, 2008). 

To the authors’ best knowledge, the wave propagation algorithm has not yet been extended for 

modeling bedload sediment transport dynamics. Therefore, the main aim of this paper is to devise 

an extended morphodynamic solver based on a Godunov-type wave propagation algorithm using 

both coupled and splitting strategies.  
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In the proposed approach, the bedload sediment transport model applies an interaction parameter 

which is variable in time and space and depends upon the fluid depth. Moreover, to accurately 

compute the bedload sediment discharge, the solver uses the Smart (1984) formula which has been 

proven to perform well in reproducing experimental data.  In comparison to other accurate and 

novel coupled morphodynamic solvers, such as the coupled Jacobian matrix (CJM), the 

proposed method developed based upon the wave propagation formula provides equally accurate 

results but uses more straightforward and simpler formulations. Additionally, a new wave 

decomposition method is introduced for the splitting approach which significantly enhances the 

efficiency of the solver compared to traditional splitting solvers in particular for modeling 

supercritical and transcritical flow regimes. This new feature allows the solver to calculate an 

accurate wave speed for mild and strong interactions where the total water depth is not constant.  

The proposed method will generalize the shallow water solver introduced by Mahdizadeh et al. 

(2011, 2012) for bedload sediment transport modeling. To obtain a basic understanding, the 

problem is considered 1D. The morphodynamic solver defined herein treats any source terms 

within the flux differencing of the finite-volume neighboring cells and is well-balanced for both 

splitting and coupled techniques. Moreover, the method can cope with the difficulties stated for 

upwind solvers developed based on non-conservative fluxes.  

The paper is structured as follows: Section 2 provides the governing equations for 1D 

morphodynamic systems with different sediment transport formulae. This is followed by a brief 

explanation of the wave propagation algorithm. Section 3 describes the methods including the flux-

wave approach for a coupled system. Additionally, the development of a new modified splitting 

solver and the corresponding wave discretization for sediment transport equations are provided. In 

Section 4, the proposed method is tested and validated by comparing its results with analytical and 
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reference solutions. Finally, the paper concludes with a summary of the proposed method and a 

conclusion of the findings. 

2. Governing equations 

The 1D SWEs coupled with a bedload sediment transport model can be expressed as follows (Lyn 
& Altinakar, 2002): 
 

( ) 0h hu
t x

∂ ∂
+ =

∂ ∂
 (1) 

2 2( ) ( 2) bhu hu gh / Bgh
t x x

τ
ρ

∂ ∂ + ∂
+ = − −

∂ ∂ ∂
 (2) 

(1 ) 0bqBp
t x

∂∂
− + =

∂ ∂
 (3) 

  
where u is the depth-averaged velocity and h is the water depth over the bed surface elevation (B), 

p  is the porosity of the sediment layer, bq  is the bedload sediment discharge, g is the acceleration 

due to gravity, x is the longitudinal position, t is time and bτ  is the bed shear stress calculated by:  

b fghSτ ρ=  (4) 

where ρ  is the water density, and fS  is the bed friction coefficient which can be evaluated by 

Manning’s equation: 

2 2

4/3 ,m
f

n uS
h

=  (5) 

where mn  is Manning’s roughness coefficient. The bedload sediment transport discharge can be 

obtained from: 

gm
b gq A u=  (6) 

 

where gm  is a constant which normally takes a value between 1 4gm≤ ≤ , and gA  is the interaction 

parameter which mainly depends on the sediment properties, is calculated through experimental 
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data, and can be expressed as .gA K ψ= . Where ψ  is obtained using different bedload sediment 

formulae as summarized in Table 1, and K can be obtained from:  

1/2 3

1/2( 1)
m

s

g nK
G h

=
−

 (7) 

where /s sG ρ ρ=  is the specific gravity and sρ  is the sediment density. The parameter cθ  is the 

critical Shields parameter and θ  implies the dimensionless bed shear stress defined as: 

2
2

1/3( 1)
m

s m

n u
G d h

θ =
−

 (8) 

where md   is the median grain size of bed materials. 

 

Table 1. Expression of function ψ based on different bedload sediment transport formulations. 

Reference Formula  

Meyer-Peter & Müller (1948) 
3/28(1 / )cψ θ θ= −  (9) 

Smart (1984) ( )
0.2 0.6 1/6

90 0

30

4 1 /s
m

d S h
d n

ψ θ θ
  

= −  
   

 (10) 

 

In Smart’s (1984) formula, described in Eq. (10), 30d  and 90d  correspond to diameters where 30% 

and 90% of the bed material sample is finer by weight. Furthermore, 0S  is the bed slope obtained 

as 0 /xS B x= −∂ ∂ , and sθ  is Smart’s critical Shield parameter which can be obtained from: 

tancos 1
tans c

ϕθ θ ϕ
χ

 
= − 

 
 (11) 
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where χ   is the angle of repose for saturated bed materials, ϕ  is the angle of the bed slope, and 

cθ is the critical bed shear stress considered as 0.047cθ = . For cases where the interaction parameter 

gA  takes a constant value, Eq. (6) is called the Grass (1991) formula. For Grass-type formula, 

based upon the test cases given in Cordier et al. (2011), a small value of the interaction parameter 

constant, in the range of 0 0.01gA≤ < , indicates a rather weak interaction and for the values above 

that mild or strong interactions takes place. 

With 1
1

η
p

=
−

 , the 1D morphodynamic system presented in Eqs. (1-3) may be written in the form 

of a conservation law as:  

( ) ( )t x x+ =U F U S U,  (12) 

where  

h
hu
B

 
 
 
  

U =  (13) 

2 2( ) 1/ 2

b

hu
hu gh

ηq

 
 = + 
  

F U  (14) 

0

0

bτBgh
x ρ

 
 ∂ − −
 ∂
 
 

S =  (15) 

 

In order to evaluate the sediment transport discharge in the current study, the empirical relations 

in Table 1 are used. The Jacobian matrix of the flux in Eqs. (13-15) can be written as: 
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2 2

0 1 0
( ) 2 0

0
c u u

σ δ

 
 = − 
  

A U  (16) 

where for the case of the Grass formula, the coefficients in the Jacobian matrix, c, σ and δ are 

obtained from c gh= , 1gm
g g

ηδ A m u
h

−= , and σ uδ= − . As it can be seen, the Jacobian matrix is 

singular and creates difficulties for any numerical solver leading to non-physical results. This 

problem can be easily rectified by using the product rule and rewriting the sediment variation term, 

Bh
x

∂
∂

, as shown in Eq. (17): 

( )B Bh hh B
x x x

∂ ∂ ∂
= −

∂ ∂ ∂
 (17) 

Substituting Eq. (17) in Eqs. (13-15) yields a modified system represented by: 

h
hu
B

 
 
 
  

U =  (18) 

2 2( ) 1/ 2

b

hu
hu gh gBh

ηq

 
 = + + 
  

F U  (19) 

0

0

bτhgB
x ρ

 
 ∂ −
 ∂
 
 

S =  (20) 

and now the associated Jacobian matrix becomes: 

2

0 1 0
( ) ( ) 2

0
g B h u u gh

σ δ

 
 = + − 
  

A U  (21) 

which gives independent eigenvectors. The values of δ  and σ  for the Meyer-Peter & Müller and 

Smart formulae are given in Table 2. In the case of the Meyer-Peter & Müller and Smart formulae, 

the effect of a non-constant interaction parameter gA , which is now variable in time and space, 

should be considered in the eigenvector computations.  
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Table 2. The derivatives of bedload sediment discharges for the for the Smart (1984) and Meyer-Peter & Müller (1948) 
bedload sediment transport formulae for the Jacobian matrix of Eq. (21) with respect to the vector of unknowns  

Meyer-Peter & Müller Smart 

σ  
 ( )

3 3

3/ 2

28
1
m

s

g n u
G h

η ω
−

−
 ( )( )

( )

0.2
0.6 1/3 2 290

0
30

4/3

4 3 1 10

3 1

m s s m

s

d g S u d G h n u
d

G h

η θ
 

− − + 
 −

−
 

δ  ( )
3 2

3/ 2

24
1s

m

G
g n u

h
ηω

−
 ( )( )

( )

0.2
0.6 2 2 1/390

0
30

4/3

4 3 1

1

m m s s

s

d g S n u d G h
d

G h

η θ
 

− − 
 

−
  

ω  is a coefficient required for the calculation of the Jacobian matrix and can be obtained as: 
( ) 1/21/3

2 2

1
1 m s c

m

d G h
n u

ω
θ

=
 −
−  

 
 

It should be stated that the derivatives in Table 2 contain the necessary mathematical expressions 

for avoiding miscalculation of eigenvalues and eigenvectors of the Jacobian matrix. The 

eigenvalues of a given Jacobian matrix can be calculated through the roots of a third-degree 

polynomial defined by: 

3 2
1 2 3( )P λ λ a λ a λ a= + + +  (22) 

where the coefficients 1 2,a a and 3a  are determined by: 

1 2a u= −  (23) 
2

2 ( )a u g h B hδ= − + +  (24) 

3a ghσ= −  (25) 

The roots of this polynomial can be computed as: 

1 1
1 12 cos( )
3 3

λ Q μ a= − −  (26) 

2 1
1 12 cos( ( 2 ))
3 3

λ Q μ π a= − + −  (27) 

3 1
1 12 cos( ( 4 ))
3 3

λ Q μ π a= − + −  (28) 

where Q, µ and R are obtained from:  

( )2
2 1

1 3
9

Q a a= −  (29) 
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3
arccos Rμ

Q

 
 =
 − 

 (30) 

( )3
1 2 3 1

1 9 27 2
54

R a a a a= − −  (31) 

It should be noted that the polynomial in Eq. (22) gives the real eigenvalues provided that

3 2 0Q R+ < . It can be proven that for the sediment discharge formulae provided in Eq. (6), the 

roots of the polynomial are always real, and hence, the system represented by Eqs. (18-20) is 

strictly hyperbolic (Castro Díaz et al., 2008; Cordier et al., 2011). The corresponding eigenvectors 

are calculated as:  

2

1
1, 2,3

( ) ( 2 )
k k

k k

λ k
u g h B λ u λ

gh

 
 
 
 = =
 

− + + − 
  

r  (32) 

which will be used with the wave propagation algorithm as explained in the next section. 

3. The wave propagation algorithm  

The 1D Godunov-type wave propagation algorithm can be written as (LeVeque, 1998): 

( ) ( )1
1/2 1/2 1/2 1/2

Δ ΔΔ Δ
Δ Δ

n n
i i i i i i

t t
x x

+ + −
− + + −= − + − − A AU U U U F F  (33) 

where n
iU  is the approximation to the cell-average at time nΔt, ∆t is the computational time step, 

∆x is the computational space step, and 1n
i
+U indicates the updated version for the vector of 

unknowns. 1/2
n

i+
F  and 1/2

n
i−
F   are the second-order correction terms needed to achieve a high-

resolution method using total variation diminishing (TVD) limiters defined in the next Section. If 

1/2 0n
i± =F , then, the first-order Godunov method is obtained. 1/2Δ i

+
−UA and 1/2Δ i

−
+UA , represent the 
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right-going and left-going fluctuations, respectively, and can be obtained by solving the Riemann 

problems at each cell interface. It should be noted that the terms 1/2Δ i
±

±A U  are independent 

symbols not related to the flux Jacobian, ( )A U , in Eq. (21), and can be defined for the cell 

interfaces as follows: 

1/2

1/2 , 1/2
: 0

Δ
i

i k i
k s

ξ
−

−
− −

<

= ∑A U  (34) 

1/2

1/2 , 1/2
: 0

Δ
i

i k i
k s

ξ
−

+
− −

>

= ∑A U  (35) 

where , 1/2k i−ξ  is called the flux-wave which is computed by multiplying a particular coefficient 

, 1/2k iβ −  into the relevant eigenvector , 1/2k i−r , propagating with a wave speed , 1/2k is − , where for a given 

eigenvector presented in Eq. (32) is equal to kλ . Therefore, the flux-wave takes the form of 

, 1/2 , 1/2 , /2k i k i k iβ− − −=ξ r  which is evaluated by the flux-wave approach explained in the subsequent 

section. 

To improve the order of accuracy for the wave propagation algorithm, the second-order correction 

terms 1/2
n

i−
F  can be used. These terms are mainly determined by the flux-waves at the cell interface  

1/2ix −  given by (LeVeque, 2002): 

1/2 , 1/2 , 1/2 , 1/2
1

1 Δsgn( ) 1
2 Δ

wM

i k i k i k i
k

ts s
x

ξ− − − −
=

 = − 
 

∑ F  (36) 

where , 1/2k i−
ξ  is a limited version of the flux-wave, , 1/2k i−ξ , evaluated as , 1/2 , 1/2Φ( )k i k iε− −=ξ ξ  

where Φ( )ε  implies the limiter function and 1/2 , 1/2 ,i 1/2/i k I kε ξ ξ− − −= . The index I is used to 

represent the upwind side at the cell interface 1/2ix − : 
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, 1/2

, 1/2

1 0
1 0

k i

k i

i if s
I

i if s
−

−

− >
=  + <

 (37) 

Then Φ( )ε  is computed using a choice of limiter (LeVeque, 2002) with the monotonized centered 

limiter used (LeVeque, 2002; Mahdizadeh, 2010) in the current study: 

Φ( ) max(0,min((1 ) / 2, 2, 2 ))ε ε ε= +  (38) 
  

4. Flux-wave method for the morphodynamic system 

4.1. Coupled system 
The flux-wave formula for the wave propagation algorithm, originally introduced by Bale et al. 

(2002), handles the source terms within the flux-differencing of adjacent finite-volume cells. This 

method was later modified by Mahdizadeh et al. (2011, 2012), and here is further extended for the 

solution of a 1D coupled morphodynamic system. In comparison to the 1D SWEs, an additional 

discretization regarding the sediment flux should be implemented for the flux-wave computations. 

The 1D flux-wave formula can be expressed as (Bale et al., 2002; LeVeque, 2002): 

1 1/2 , 1/2
1

( ) ( ) Δ
wM

i i i k i
k

x− − −
=

− − =∑F U F U S ξ  (39) 

where ( )iF U  and 1( )i−F U  are the fluxes at the right and left side of the cell interface ( 1/ 2i − ), wM  

denotes the number of waves, which for the morphodynamic system in this work is equal to 3, and 

Δx  indicates the cell length. To obtain the relevant flux-waves, , 1/2k i−ξ , the coefficients , 1/2k iβ −  for 

each cell interface ( 1/ 2i − ) must be calculated. This can be achieved by defining the term φ∆  

and substituting it for the left-side of Eq. (39) such that: 
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1 1
1

( ) ( 1)2 2 2 2 1
2 1 1 1 1 1 1

3
1 ( 1)

Δ

Δ Δ ( 1 / 2 ) ( 1 / 2 ) ( )( )
2 2

Δ

i i i i

b i b ii i
i i i i i i i i i i i i

i bi i b i

h u h u
φ

τ τB B
φ h u gh gB h h u gh gB h g h h

ρ
φ

υ q υ q

− −

−−
− − − − − −

− −

−

++
= + + − + + − − +

−

 
   
   
   
    

  

φ =  (40) 

with these definitions, and substituting the eigenvectors from Eq. (32) into the flux-wave formula, 

the resulting equation becomes: 

1 1

1 2 3 2 2

1 2 3 3 3

1 1 1 Δ
Δ
Δ

β φ
λ λ λ β φ
s s s β φ

     
     =     
         

  

  

 (41) 

where ks  is given by:  
2 ( ) ( 2 )k k

k
u g h B λ u λs

gh
− + + −

=
   




 (42) 

variables u  and h  are calculated on the basis of the wave speed formulas as explained in 

(Mahdizadeh et al., 2011) and the eigenvalues, kλ , are evaluated through Eqs. (26-28), where the 

terms u and h  can be substituted by u and h , respectively. In the case of a wet-state, u and h  can 

be simply evaluated using the Roe formula (LeVeque, 2002; Roe, 1981):  

1 1

1

i i i i

i i

h u h u
u

h h
− −

−

+
=

+
  and 1

1 ( )
2 i ih h h−= + . (43) 

and hence, δ  can be re-written as: 

1
11

1
01 1

( ) g
g

m
m kg i i k

i i
ki i i i

A υ h h
δ u u

h u h u

−
− −−

−
=− −

+
=

+
∑  (44) 

For calculating the kβ coefficients, at each time step, the linear system presented in Eq. (41) should 

be solved, and in this study the Lower-Upper (LU) decomposition method with partial pivoting 

(Press et al., 1992) is utilized. These coefficients are later used to calculate the flux-waves, , 1/2k i−ξ



15 
 

, eventually required for evaluating the right- and left-going fluctuations, 1/2Δ i
±

±A U as expressed 

in Eqs. (34-35). Therefore, in summary, the modified coupled numerical solver applied in the 

current study, is based on a Godunov-type wave propagation algorithm where the fluxes 

comprising sediment discharge are treated within the flux-wave approach. Additionally, a new 

choice of source term decomposition is proposed which permits the flux term, ( )F U , to be written 

in a well-balanced form.  

To ensure the method’s stability, the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 

1928), which has relatively similar stability conditions to the SWEs, should be applied. The major 

difficulty is that for some numerical simulations, the value of λ  is greater than the characteristic 

wave speeds created by the SWEs. This problem can be fixed by defining a new choice of CFL 

number: 

( )max Δ
CFL

Δ

t

x
=

λ
 (45) 

where 1 2 3max , ,
T

λ λ λ  
  λ = . It will be shown in Section 5 that the numerical solver is not sensitive 

to the choice of the CFL number, and an approximate CFL number close to 1 can be used without 

impacting the solution’s accuracy. 

4.2. Splitting system 
 

The 1D decoupled form of the morphodynamic system including the shallow water and the Exner 

equations can be expressed as: 

( )t x+ =U F U S  (46) 
( ) 0t b x

B υ q+ =  (47) 

where 
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u
hu
 
 
 

U =  (48) 

2 2( )
1/ 2
hu

hu gh
 

=  + 
F U  (49) 

0

bτBgh
x ρ

 
 ∂ − −

∂  

S =  (50) 

As previously mentioned, the splitting solution solves the SWEs and the Exner equation in a 

separate manner. This means that the bedload sediment transport formula is first solved for a 

particular time step, and the obtained bed profile is inserted as a fixed source term into the 

momentum equation for the shallow water flow. The SWEs are then solved using the modified 

flux-wave approach given in (Mahdizadeh et al. (2011) for both wet and dry states. To evaluate 

the sediment discharge equation, the following wave decomposition should be done:  

( )1 ( ) ( 1) 1/2( ) ( )i i b i b i iF U F U υ q q ξ− − −− = − =  (51) 

where ( )b iq and ( 1)b iq −  are the amount of sediment discharge for cells i  and 1i −   computed using 

the bedload sediment discharge equations listed in Table 1. In order to incorporate sediment 

transport into the flux-differencing approach, the depth-average velocity, u , in the bedload 

sediment transport formula should be substituted by 1( )su q z - B −= , where sz = h+ B  and q  is the 

constant water discharge per unit width (steady-state condition). Thus, the bedload-sediment 

transport equation can be rewritten as: 

( )g gm m
b g sq A q z B −= −  (52) 

and the wave speed can be computed as:  

1
1 2 ( )g gm mb

i / g g s
qs A m q z B
B

− −
−

∂
= = −
∂

 (53) 
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By placing a modified form of sediment discharge into Eq. (51), the flux-wave, 1/2iξ − , can be 

simply obtained, and the bed variation update for the next time step can be computed as: 

1
1/2 1/2 1/2 1/2

Δ Δ( Δ Δ ) ( )
Δ Δ

n n n n
i i i i i i

t tB B U U F F
x x

+ + −
− + + −= − + − − A A  (54) 

As discussed in the Introduction Section, any powerful shallow water solver, without any 

limitation, can be appropriately applied for hydrodynamic calculations. However, as will be shown 

within the numerical results section, the splitting technique achieved based on Eq. (52) only is 

valid for weak or rather mild sediment and water interactions, where the total depth of fluid plus 

sediment, sz , can be assumed to remain constant. In conventional methods, the wave speed is 

required for calculating the bedload sediment flux, and is normally obtained by differentiating the 

sediment discharge, bq , with respect to B according to Eq. (53). For transcritical and supercritical 

flows, the interaction between the sediment discharge and the free-surface flow is rather 

considerable, and the assumption of a constant total depth does not stand. A major difficulty that 

arises here is that the bedload sediment discharge equations are independent of the bed profile 

variation, and the derivative bq
B

∂
∂

 which gives the wave speed, 1 2i /s − , is no longer valid. de Vries 

(1973) has suggested the following wave speed for each finite volume cell interface for the case 

of transcritical or supercritical regimes: 

1 2 2 2i /
gus

c u
δ

− =
−

 (55) 

where c andδ have been defined in Eq (16). Although, the defined formulation has been proposed 

for supercritical flow conditions, as is shown later, it cannot be accurately applied to near 

transcritical zones as it leads to non-physical results. To overcome this problem, and to develop a 
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more generalized splitting solver suitable for use in both transcritical and supercritical flow, a new 

decomposition of the variable waves, , 1/2k iW − , and flux-waves, , 1/2k iξ −  initially introduced in Bale 

et al. (2002) for the solution of gas dynamics problems, is utilized: 

2
, 1/21

1 , 1/2

m
k ii i

i k ii i-1

WU U
ξF(U ) F(U )

−−

= −

−   
=   −   
∑  (56) 

where iF(U ) and i-1F(U )  are the fluxes at the right and left side of cell interface, 1/2ix − , and iU  

and 1iU − denote the vector of unknowns at the same locations. Satisfying this equation has some 

useful properties, since its solution comprises both waves and flux differencing, which ultimately 

leads to a unique wave and extraction of a wave speed independent of the derivative bq
B

∂
∂

. For the 

wave propagation algorithm, each wave can be related to the flux-wave through the flowing 

equation (LeVeque 1998, 2002):  

1/21/2 1/2ii iξ s W
−− −=  (57) 

where 
1/2i

s
−

again represents the wave speed. To solve the transport equation, Eq. (56) is rewritten 
as:  

1 1/2

( 1) 1/2

i i i

bi b i i

B B W
q q ξ

− −

− −

−   
=   −   

  (58) 

where iB  and 1iB −  are values of sediment bed profiles at cells i-1 and i, respectively, and ( )b iq and 

( 1)b iq −  are the bedload sediment discharges computed by the equations listed in Table 1. To 

evaluate waves within each computational finite volume cell interface, only the differences 

between adjacent bed profile cells are required. The flux-wave is then obtained in a similar manner 
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to the approach introduced in Section 3.1. Therefore, on the basis of Eq. (57) the wave speed at 

cell interface 1/2ix −  can be calculated as: 

1/2 1, 1/2 1, 1/2/i i is ξ W− − −=  (59) 

In cases where the differences between the bed profile of adjacent cells tend to zero, i.e. 

1 0i iB B −− = , it can be assumed that the interaction between the sediment and water surface is 

rather weak and Eq. (52) can be appropriately used. Additionally, and in particular for the sediment 

transport equation, the flux-wave approach directly incorporates the sediment fluxes into the flux-

wave computation which is independent of the bed differencing. The effect of bedload sediment 

only emerges in the wave speed evaluation required to determine the flux-wave direction. 

5. Numerical results 

To validate the suitability of the proposed modified flux-wave method using both modified 

coupled flux-wave (CFW) and modified splitting flux-wave (SFW) techniques, different test cases 

were examined. First, the well-balanced property of the proposed method was examined.  Second, 

the method was used to simulate parabolic bedload transportation over a flat bed. Next, dam-break 

waves over a step type sediment bed were modeled. Then, the movement of a sediment hump with 

a defined transcritical initial condition was considered. Finally, a dam-failure by overtopping was 

simulated. The morphodynamic model was solved using an in-house FORTRAN code on an Intel 

Core (i7-4790) 3.6 GHz processor with 16GB of RAM. It should be stated that for all test-cases 

reported in this Section, a high-resolution wave propagation algorithm with the monotonized 

central (MC) limiter was used. 

5.1. Quiescent water over smooth and discontinuous bed profile  
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The shallow water equations solvers with variable bed capabilities should mainly satisfy the well-

balanced or C-property to provide a balance between the effects of source terms and flux-gradient 

for steady-state problems. In order to verify the C-property of the modified flux-wave formula, a 

still water condition was created over two different bed profiles given by the following equations: 

22( ,0) 5exp( ( 5) )
5

B x x= − −   (60) 

and 
4 if 4 8

( ,0)
0 Otherwise

x
B x

≤ ≤
= 


  (61) 

where the entire computational domain was set between 0 10x≤ ≤ . As for the initial conditions 

of both test cases, the water surface and discharge were defined as 10 and 0.sz h B hu= + = =  

To examine the capability of the defined flux-wave formula in maintaining still water conditions, 

the computation was done until time t = 10 s. The Euclidean norm calculated between the obtained 

numerical results using 3000 computational cells, and the quiescent initial condition for both 

coupled and splitting techniques are listed in Table 3. These results clearly show that still water 

initial conditions have been preserved during the simulations and confirm that the C-property 

condition is satisfied.  

Table 3. Verification of well-balanced property using the Euclidean norm for both the CFW and SFW approaches. 

Discontinuous bed 
Eq.(61) 

Smooth bed 
 Eq. (60) 2e  

 
 

0 5.51366E-016 sz  CFW 
1.23354E-021 2.298789E-016 hu 

0 2.512147E-016 sz  SFW 
6.501008E-016 6.594368 E-016 hu 

 

5.2. Parabolic bed surface transportation  

The purpose of using this test case was to compare the proposed morphodynamic solver with the 

exact solution proposed by Hudson and Sweby (2005) using the Grass (1981) formula with a 
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constant gA  value. In this test case, a channel of 1000 m length was considered, and the water 

depth and discharge were set at constant values of 10 m and 10 m3/s, respectively. The initial 

condition for the sediment layer profile was defined by:  

( )2 300
sin if 300 500

( ,0) 200
0 Otherwise

x
B x

B x
π − 

≤ ≤  =   





  (62) 

The exact solution for the defined test case was achieved by assuming a constant water depth and 

sediment discharge for the entire computational domain, and calculating 0x  from the following 

equation (Hudson, 2001): 

( )
( 1)

02
0

0

( 1)

300
sin if 300 500

200

Otherwise

g

g

g

m

m s
g g

m
s

x
z x

x x A m q t

z

π
υ

− +

− +

  −  − ≤ ≤    = +    



  (63) 

Equation (63) cannot be stated in terms of 0x  and the exact solution of the sediment layer ( , )B x t  

was calculated by substituting 0x  into Eq. (62). This solution is only valid until the time the 

characteristics of the hyperbolic first cross, which can be computed by equating 0dx / dx  to zero. 

By setting the values 0 001gA .= , 3gm = , 0 4.=η , and 1B =


, the calculated threshold time was 

found to be t = 238079 s (Hudson, 2001). 

Figure 1 shows the numerical results obtained with both first-order and high resolution CFW 

approaches along with the exact solution for the bed profile and velocity. The results were 

evaluated at times t = 238079 s and 5339 s (which correspond to B


=1 and 5, respectively) with 

200 computational cells. As can be seen, a very good agreement is achieved between the CFW 
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results and the exact solution for both values of B


, in particular at the top of the hump motion 

where a main discrepancy is observed in the predictions of the numerical methods developed based 

on non-conservative fluxes (see Castro Díaz et al., 2008). However, the first-order CFW gives 

rather diffusive results in particular for the longer time (t = 238079 s) which verifies that the first-

order scheme is not able to accurately predict the bedload sediment movement even for small 

interactions which occur between the free-surface and bedload sediment as time increases.    

The numerical results of the SFW were evaluated with the same computational cells (Fig. 2). It is 

observed that the numerical solution nearly coincides with the exact solution for both bed and 

velocity, and similar results to those of the coupled approach were obtained, and again, a rather 

considerable discrepancy was observed between the first-order and the exact solutions at time t = 

238079 s. In terms of CPU time, the splitting method took only 16 s to reach the time t = 238079 

s, whereas for the coupled method, the elapsed CPU time was much larger (68 s). This is mainly 

attributed to the time required for solving the linear system in Eq. (41) which is implemented at 

each time step for the coupled technique. Note that for the presented test case no difference was 

observed between the splitting methods performed based on either Eq. (52) or Eq. (58) (SFW) and 

both methods converged to the same solution.  

5.3. 1D dam-break test case  

The capability of the defined numerical solver for modeling dam-break waves was tested using 

experimental data collected at UCL (Spinewine & Zech, 2007). The experiments were done in a 6 

m long channel where a middle gate was used to cause dam-break conditions. The channel bed 

was covered with uniform sand with 50 1.82d mm= , density 32683s kg m−=ρ , porosity 0.47η = , 

friction angle of 30ϕ = , and a Manning’s coefficient of 0.0165mn = s.m-1/3 was considered. The 
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initial conditions for the dam-break test-case are listed in Table 4.  This test-case comprises a left 

moving rarefaction and right moving shock waves along with a hydraulic jump that appears at the 

location of the gate when it is removed. In all simulations, the cell space in the x-direction was 

chosen to be 0.1x∆ =  and the Smart (1984) sediment discharge formula was used. The ability to 

incorporate bed slope variation into the bedload sediment discharge calculations and good 

agreement with experimental data (Juez et al., 2014; Murillo & García-Navarro, 2010), were the 

main reasons for choosing the Smart (1984) sediment discharge formula. 

Fig. 3 compares the free-surface numerical results of the CFW and SFW approaches with measured 

experimental data along with the coupled Jacobian method (CJM) provided by Murrillo and 

García-Navarro (2010) for the given test case. As can be seen, both the coupled (CFW) and 

splitting schemes (SFW) developed based on the flux-wave method can accurately model the front 

shock and the left moving rarefaction waves at all times, the simulation results approximately 

coincide with the experimental results and CJM approach and no obvious discrepancy is observed 

between the CFW and SFW approaches.    

Table 4. Initial condition for the 1D dam-break test case. 

Test Lh  Rh  LB  RB  

B 0.25 0.1 0.1 0.0 

 

Figure. 4 illustrates the bed elevation variations calculated using the CFW and SFW methods for 

test case B along with the CJM results. As can be observed, the CFW and SFW approaches produce 

rather similar results to the CJM method. However, a discrepancy between the SFW results and 

the experimental measurements is still observed at the place of shock for the bed elevation 

highlighted in Fig. 5. As can be seen in this figure, this difference is less obvious for the CFW and 
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CJM methods developed based upon the coupled strategy, in particular at latter times. This can be 

attributed to the choice of the Exner equation which is considered as a capacity model. In terms of 

CPU time, the coupled method took 0.0156 s whilst the splitting technique required 0.0127 s to 

reach time t = 1.5 s. 

5.4. Sediment profile hump propagation with initial subcritical flow 

A third test case, borrowed from Cordier et al.  (2011), was used to investigate the ability of the 

numerical solver in modeling the sediment hump propagation with different values of gA  which 

results in different sediment and water surface interaction regimes. The initial condition for the 

bed profile, discharge and depth-average velocity were chosen as: 

 
2( 5)

2

( ,0) 0.5,

( ,0) 0.1 0.1

( ) 6.386,
2

x

hu x

B x exp
u g h B

− −


=


= +


 + + =


  
(64) 

(65) 

(66) 

Fig. 6 shows the initial conditions for the water surface and bed profiles, computed by solving a 

nonlinear equation for the water depth, h. To produce a rather mild interaction for the initial 

conditions, first, the bedload sediment discharge formula Eq. (6) with Ag = 0.005 was used. The 

numerical modeling results of both coupled and splitting solutions, using 200 numerical cells are 

shown in Fig. 7 at time t = 10 s. As can be seen, both methods provide approximately identical 

results in particular for the free-surface and velocity, and the only difference is observed at the 

shock front location for the bed profile where the coupled method gives a sharper shock front as 

shown in Fig. 8. The CPU time for the splitting approach was 0.056s, which again is less than that 

for the coupled method (0.0936s). 
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Figure 9 depicts the comparison between the first and second-order SFW and CFW schemes using 

the method presented by Cordier et al. (2011). As can be observed, Cordier’s method completely 

coincides with the first-order wave propagation algorithm for both coupled and splitting solutions. 

Fig. 10 shows the results for both techniques with a different gA value set at 0.07. This gA value 

produces a rather strong interaction between the bed elevation and free-surface flow, but as shown 

in Fig. 10b, the new modified splitting technique (SFW) provided in Eq. (58) gives approximately 

similar results to that of the simultaneous solution. However, there are still some differences 

between the two approaches, particularly at the start of the sediment bed profile as shown in Fig. 

11a. It should be noted that choosing a CFL number greater than 0.3 for the splitting method (SFW) 

results in much more instability, and finally, causes divergence in the solutions. Therefore, to run 

all the test cases with a fixed CFL number, this number has been chosen as the reference CFL for 

the SFW approach. These findings also verify that the defined splitting method is sensitive to the 

choice of the CFL number when modeling strong interactions or supercritical flow and requires a 

lower CFL number than the one necessary for propagation over a dry-state (Section 5.5). 

Figure 12 shows the comparison among the sediment profile hump propagation simulations by the 

SFW and CFW methods and the solutions provided by Cordier et al. (2011). As can be seen, the 

first-order CFW gives very good agreement with the coupled solution presented in Cordier et al. 

(2011), although being more diffusive than the CFW (second-order scheme). For the splitting 

solution, as shown in Fig. 11b, the SFW achieves better agreement with the coupled solution than 

that for Cordier et al. (2011). 

Figure 13 shows the splitting results obtained using the sediment discharge formula provided in 

Eq. (52). As can be observed, compared to the coupled solution, this choice of wave speed causes 
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a significant discrepancy which is mainly due to the fact that the solution cannot be accurately 

implemented for flow regimes of near supercritical conditions. The CPU time for the current 

splitting method was 0.0312 s whilst the coupled method took only 0.01 s.  

5.5. Sediment hump propagation with initial transcritical flow without shock 

This test case was considered to investigate the validity of the proposed method in modeling 

sediment and surface interactions under transcritical conditions without a shock. In order to create 

the transcritical regime the following conditions originally defined in Cordier et al. (2011) were 

used: 

2( 5)

( ,0) 0.6

( ,0) 0.1 0.1
( ,0) ( ,0) 0.4

x

hu x

B x exp
h x B x

− −

=


= +
 + =

 

(67) 
(68) 
(69) 

The upstream boundary imposed a discharge equal to 20.6 /=hu m s  , whilst the downstream 

depth was fixed at 0.6=h  m in the case of supercritical flow; and no boundary condition was 

required for the supercritical flow. With these conditions, the solver was run with 0=gA   until 

the steady-state solution was achieved. 

The global relative error for the steady-state solution can be defined as : 

1n n
i i

n
i i

h hR
h

− −
=  

 
∑  (70) 

where nh  and 1−nh   are the fluid depth at time levels n  and 1n − , respectively. The regime is 

considered to be steady-state when the value of R  reaches approximately zero. Fig. 14 shows the 

steady-state results used as an initial condition for the morphodynamic solver. 
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As can be observed, using 200 cells results in the discharge perfectly matching the theoretical 

discharge which is equal to 20.6 /=hu m s   according to Eq. (70). To compare the models under 

a transcritical regime, a small 0 0005=gA .  was chosen for both solutions, since the considered 

steady-state initial condition dictates Froude numbers greater than 1, and the solution is no longer 

affected by the choice of gA . Fig. 15 shows the results of the flux-wave method computed using 

the CFW and SFW techniques at time t = 15 s. As can be observed, both solutions provide nearly 

identical results which verifies that the SFW method with a new choice of wave speeds, provided 

in Eq. (58), can be efficiently applied for the transcritical flow regime which contains no shocks. 

The CPU running time for the modified splitting method was 0.327 s including the steady-state 

process and the coupled method required 0.63 s of CPU time. 

5.6. Dam failure caused by overtopping 

This test case was first introduced by Tingsanchali and Chinnarasri (2001) and was used here to 

evaluate the wet/dry front modeling capability of the defined SFW and CFW solvers for problems 

where morphological changes occur over a dry state. The tests were performed in a channel 35 m 

long, 1 m deep, and 1 m wide, a dam with a height of 0.8 m and crest width of 0.3 m was 

considered. The downstream slope of the dam was set at 1V :3H  whilst the downstream slope was 

varied but initially fixed at 1V : 2.5H .  It should be stated that the downstream face of the dam was 

also covered with a material type called Sand I with Manning’s coefficient equal to 0.018mn = , 

30 0.52 mmd = , the mean grain size 1.13 mmmd = , and 90 3.8 mmd =  corresponding to the conditions 

of test C-2 in the original paper (Tingsanchali & Chinnarasri, 2001). As a boundary condition, an 

inflow discharge equal to 1.23 L/s was imposed onto the left boundary and an extrapolation 
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boundary condition was utilized for the left boundary. Both results of both solvers were calculated 

with a cell length of 0.01 m and CFL = 0.5.  

Figure 16 shows the numerical results for the bed profile along with the overtopping discharge and 

water surface level at the crest obtained using the SFW and CFW solvers with choices of both the 

Meyer–Peter and Müller (1948) and Smart (1984) formulae at time t = 30 and 60 s, respectively. 

These results have also been compared with the non-capacity turbid model provided in Wu (2008). 

As can be seen, both methods with the choice of the Smart (1984) sediment discharge formula can 

accurately follow the experimental data in particular at time t = 60 s, rather same results were 

obtained from the two solvers. This indicates that both approaches can precisely model a rapidly 

varying flow over a dry and erodible bed. For the Meyer-Peter and Müller (1948) bedload 

discharge formula, some discrepancy is seen, in particular at the dam crest where the overtopping 

initiated. This may be due to fact that in the Meyer-Peter and Müller (1948) formula the bed slope 

is not incorporated into the sediment discharge computations. In Fig. 16c the relevant water 

reservoir level is depicted which demonstrates a good agreement between the model outputs and 

measured data in particular for the Smart (1984) formula. These results are also in good agreement 

with the Turbid flow model. Fig. 16d exhibits the over-topping discharge computed by the CFW 

and SFW approaches along with the measured data after 120 s just upstream of the breach. It is 

evident, the prediction of discharge at the location of the dam crest using even the Smart (1984) 

formula is far from the experimental measurements for both CFW and SFW approaches. This 

inaccurate computation of the bedload sediment discharge can be revised using a non-capacity 

model. In contrast, the Turbid model developed based upon a non-capacity formulation accurately 

follows experimental measurements.  

6. Conclusions 
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In the current paper, a new numerical scheme based on a modified flux-wave method is presented 

for solving 1D bedload morphodynamic systems. The proposed approach includes both coupled 

and splitting solutions developed using a wave propagation algorithm. The modified coupled 

solution (CFW) solves a fully coupled system in a well-balanced form using a less sophisticated 

approach compared to other novel coupled morphodynamic solvers, whilst preserving 

computational accuracy. For the modified splitting approach (SFW), a new decomposition of wave 

speed was defined and shown to significantly improve the effectiveness of the method for 

modeling strong interaction regimes based on an unsteady formulation. The accurate performance 

of the numerical solver was demonstrated by comparison with exact solutions and alternative 

simulations for different test cases taken from the literature. First the parabolic bed surface 

transportation over a flatbed was simulated using both the CFW and SFW schemes and very good 

agreements were obtained. For the dam break test case, the CFW and SFW approaches using the 

Smart (1984) bedload sediment discharge formula provided very close results with the observed 

measurements for both wet and dry states. The defined CFW and SFW approaches were then used 

to simulate mild and strong free-surface and bedload interactions, and both models were found to 

produce nearly identical results. Finally, the defined solvers were tested for modeling dam failure 

caused by overtopping with choices of Smart (1984) and Meyer-Peter and Müller (1948) sediment 

discharge formule, and again, good agreement was achieved with experimental data in particular 

for the Smart (1984) formula.   
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List of Figures: 
 
Fig. 1. Comparison of the results of the modified coupled flux wave (CFW) versus first-order 
CFW and the exact solution for the parabolic bed surface propagation test case at a) Bed profile t 
= 2380279 s [ 1B =


], b) Bed profile t = 5339 s [ B = 5


], c) Velocity at t = 2380279 s [ 1B =


] and d) 

Velocity at t = 5339 s [ B = 5


]. 

Fig. 2. Comparison of the results of the splitting flux wave (SFW) versus first-order SFW and 
the exact solution for the parabolic bed surface propagation test case at a) Bed profile t = 
2380279 s [ 1B =


], b) Bed profile t = 5339 s [ B = 5


], c) Velocity at t = 2380279 s [ 1B =


] and d) 

Velocity at t = 5339 s [ B = 5


]. 

Fig. 3. Comparisons among the simulated free-surface profiles obtained by the CFW, SFW and 
CJM approaches applying the Smart (1984) formula and experimental measurements at times t = 
0.25, 0.75, 1, 1.25 and 1.5 s. 
 
Fig. 4. Comparisons among the simulated bedload sediment profiles obtained by the CFW, SFW 
and CJM approaches applying the Smart (1984) formula and experimental measurements at 
times t = 0.25, 0.75, 1, 1.25 and 1.5 s. 
 
Fig. 5. A magnified illustration of the numerical and experimental results provided in Fig. 4 for 
the bed elevation. 

Fig. 6. Initial conditions for dam-break test case B defined in Eq. (59). 

Fig. 7. Sediment profile hump propagation in a subcritical regime with Ag = 0.005 at t = 10 s 
computed using a) CFW and b) SFW. 

Fig. 8. Comparison between the CFW and SFW solutions in modeling sediment profile hump 
propagation in a subcritical regime with Ag = 0.005 at t = 10 s. 

Fig. 9. Comparison among first and second-order a) SFW and b) CFW schemes and the Cordier 
et al. (2011) method with Ag = 0.005 at t = 10 s. 

Fig. 10. Modeling sediment profile hump propagation in a supercritical regime with Ag = 0.07 at 
t = 2.1 s, computed using a) CFW and b) SFW. 

Fig. 11. Comparison between the results of the SFW and CFW solutions in modeling sediment 
hump propagation with Ag = 0.07 at t = 2.1 s, for a) Bed profile, and b) Bed profile magnified at 
x = 1 m. 

Fig 12. Sediment profile hump propagation in a subcritical regime comparison with the Cordier 
et al. (2011) method with Ag = 0.07 at  t = 2.1 s, computed using a) CFW, and b)  SFW.   

Fig. 13.  Modeling sediment propagation using the SFW solution with the discharge explained in 
Eq. (46). 
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Fig. 14.  Initial conditions for the transcritical flow without shock. 

Fig. 15. Modeling sediment profile hump propagation in a transcritical regime without shock and 
considering Ag = 0.0005 at t = 15 s computed using a) CFW, and b) SFW.   

Fig. 16. Comparison among the CFW and SFW solvers and the experimental data for a test case 
of dam failure caused by overtopping: a) Bed profile at t = 30 s, b) Bed profile at t = 60 s, c) 
Overtopping discharge, and d) Water level.  
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