TY - JOUR
T1 - X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions
AU - Ansell, S
AU - Barnes, AC
AU - Mason, PE
AU - Neilson, GW
AU - Ramos, Silvia
PY - 2006/12/1
Y1 - 2006/12/1
N2 - The presence of ions in water provides a rich and varied environment in which many natural processes occur with important consequences in biology, geology and chemistry. This article will focus on the structural properties of ions in water and it will be shown how the 'difference' methods of neutron diffraction with isotopic substitution (NDIS) and anomalous X-ray diffraction (AXD) can be used to obtain direct information regarding the radial pair distribution functions of many cations and anions in solution. This information can subsequently be used to calculate coordination numbers and to determine ion-water conformation in great detail. As well as enabling comparisons to be made amongst ions in particular groups in the periodic table, such information can also be contrasted with results provided by molecular dynamics (MD) simulation techniques. To illustrate the power of these 'difference' methods, reference will be made to the alkali group of ions, all of which have been successfully investigated by the above methods, with the exception of the radioactive element francium. Additional comments will be made on how NDIS measurements are currently being combined with MD simulations to determine the structure around complex ions and molecules, many of which are common in biological systems.
AB - The presence of ions in water provides a rich and varied environment in which many natural processes occur with important consequences in biology, geology and chemistry. This article will focus on the structural properties of ions in water and it will be shown how the 'difference' methods of neutron diffraction with isotopic substitution (NDIS) and anomalous X-ray diffraction (AXD) can be used to obtain direct information regarding the radial pair distribution functions of many cations and anions in solution. This information can subsequently be used to calculate coordination numbers and to determine ion-water conformation in great detail. As well as enabling comparisons to be made amongst ions in particular groups in the periodic table, such information can also be contrasted with results provided by molecular dynamics (MD) simulation techniques. To illustrate the power of these 'difference' methods, reference will be made to the alkali group of ions, all of which have been successfully investigated by the above methods, with the exception of the radioactive element francium. Additional comments will be made on how NDIS measurements are currently being combined with MD simulations to determine the structure around complex ions and molecules, many of which are common in biological systems.
U2 - 10.1016/j.bpc.2006.04.018
DO - 10.1016/j.bpc.2006.04.018
M3 - Article
C2 - 16815625
SN - 0301-4622
VL - 124
SP - 171
EP - 179
JO - Biophysical Chemistry
JF - Biophysical Chemistry
IS - 3
ER -