What Can I Not Do? Towards an Architecture for Reasoning about and Learning Affordances

Mohan Sridharan, Ben Meadows, Rocio Gomez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Downloads (Pure)

Abstract

This paper describes an architecture for an agent to learn and reason about affordances. In this architecture, Answer Set Prolog, a declarative language, is used to represent and reason with incomplete domain knowledge that includes a representation of affordances as relations defined jointly over objects and actions. Reinforcement learning and decision-tree induction based on this relational representation and observations of action outcomes, are used to interactively and cumulatively (a) acquire knowledge of affordances of specific
objects being operated upon by specific agents; and (b) generalize from these specific learned instances. The capabilities of this architecture are illustrated and evaluated in two simulated domains, a variant of the classic Blocks World domain, and a robot assisting humans in an office environment.
Original languageEnglish
Title of host publicationProceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)
EditorsLaura Barbalescu, Jeremy Frank, Mausam, Stephen F. Smith
PublisherAAAI Press
Number of pages9
Publication statusPublished - 18 Jun 2017
EventTwenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)
- Pittsburgh, United States
Duration: 18 Jun 201723 Jun 2017

Conference

ConferenceTwenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)
Country/TerritoryUnited States
CityPittsburgh
Period18/06/1723/06/17

Fingerprint

Dive into the research topics of 'What Can I Not Do? Towards an Architecture for Reasoning about and Learning Affordances'. Together they form a unique fingerprint.

Cite this