VITAL: VIsual Tracking via Adversarial Learning

Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao Bao, Wangmeng Zuo, Chunhua Shen, Rynson W.H. Lau, Ming-Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The tracking-by-detection framework consists of two stages, i.e., drawing samples around the target object in the first stage and classifying each sample as the target object or as background in the second stage. The performance of existing trackers using deep classification networks is limited by two aspects. First, the positive samples in each frame are highly spatially overlapped, and they fail to capture rich appearance variations. Second, there exists extreme class imbalance between positive and negative samples. This paper presents the VITAL algorithm to address these two problems via adversarial learning. To augment positive samples, we use a generative network to randomly generate masks, which are applied to adaptively dropout input features to capture a variety of appearance changes. With the use of adversarial learning, our network identifies the mask that maintains the most robust features of the target objects over a long temporal span. In addition, to handle the issue of class imbalance, we propose a high-order cost sensitive loss to decrease the effect of easy negative samples to facilitate training the classification network. Extensive experiments on benchmark datasets demonstrate that the proposed tracker performs favorably against state-of-the-art approaches.
Original languageEnglish
Title of host publication2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublisherIEEE
Pages8990-8999
Number of pages10
ISBN (Print)978-1-5386-6421-6
DOIs
Publication statusPublished - 23 Jun 2018
Event2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition - Salt Lake City, UT, USA
Duration: 18 Jun 201823 Jun 2018

Conference

Conference2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Period18/06/1823/06/18

Keywords

  • Target tracking
  • Training
  • Gallium nitride
  • Feature extraction
  • Generators
  • Visualization
  • Entropy

Fingerprint

Dive into the research topics of 'VITAL: VIsual Tracking via Adversarial Learning'. Together they form a unique fingerprint.

Cite this