Viscous flows in corner regions: Singularities and hidden eigensolutions

James Sprittles, Yulii Shikhmurzaev

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


Numerical issues arising in computations of viscous flows in corners formed by a liquid fluid free surface and a solid boundary are considered. It is shown that on the solid a Dirichlet boundary condition, which removes multivaluedness of velocity in the 'moving contact-line problem' and gives rise to a logarithmic singularity of pressure, requires a certain modification of the standard finite-element method. This modification appears to be insufficient above a certain critical value of the corner angle where the numerical solution becomes mesh-dependent. As shown, this is due to an eigensolution, which exists for all angles and becomes dominant for the supercritical ones. A method of incorporating the eigensolution into the numerical method is described that makes numerical results mesh-independent again. Some implications of the unavoidable finiteness of the mesh size in practical applications of the finite-element method in the context of the present problem are discussed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Original languageEnglish
Pages (from-to)372-382
Number of pages11
JournalInternational Journal for Numerical Methods in Fluids
Issue number4
Publication statusPublished - 10 Feb 2011


Dive into the research topics of 'Viscous flows in corner regions: Singularities and hidden eigensolutions'. Together they form a unique fingerprint.

Cite this