Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation

Damon Huber, Dana Boyd, Yu Xia, Michael H Olma, Mark Gerstein, Jon Beckwith

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)

Abstract

We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185:5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.
Original languageEnglish
Pages (from-to)2983-91
Number of pages9
JournalJournal of Bacteriology
Volume187
Issue number9
DOIs
Publication statusPublished - May 2005

Keywords

  • Hydrophobic and Hydrophilic Interactions
  • Protein Disulfide-Isomerases
  • Blotting, Western
  • Escherichia coli Proteins
  • Genes, Reporter
  • Escherichia coli
  • Protein Sorting Signals
  • Signal Recognition Particle
  • Thioredoxins
  • Protein Transport

Fingerprint

Dive into the research topics of 'Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation'. Together they form a unique fingerprint.

Cite this