Use of an extended KDIGO definition to diagnose acute kidney injury in patients with COVID-19: A multinational study using the ISARIC–WHO clinical characterisation protocol

ISARIC Clinical Characterisation Group, Marina Wainstein, Samual Macdonald, Daniel Fryer, Kyle Young, Valeria Balan, Husna Begum, Aidan Burrell, Barbara Wanjiru Citarella, J. Perren Cobb, Sadie Kelly, Kalynn Kennon, James Lee, Laura Merson, Srinivas Murthy, Alistair Nichol, Malcolm G. Semple, Samantha Strudwick, Steven A. Webb, Patrick RossignolRolando Claure-Del granado, Sally Shrapnel

Research output: Contribution to journalArticlepeer-review

64 Downloads (Pure)

Abstract

Background
Acute kidney injury (AKI) is one of the most common and significant problems in patients with Coronavirus Disease 2019 (COVID-19). However, little is known about the incidence and impact of AKI occurring in the community or early in the hospital admission. The traditional Kidney Disease Improving Global Outcomes (KDIGO) definition can fail to identify patients for whom hospitalisation coincides with recovery of AKI as manifested by a decrease in serum creatinine (sCr). We hypothesised that an extended KDIGO (eKDIGO) definition, adapted from the International Society of Nephrology (ISN) 0by25 studies, would identify more cases of AKI in patients with COVID-19 and that these may correspond to community-acquired AKI (CA-AKI) with similarly poor outcomes as previously reported in this population.

Methods and findings
All individuals recruited using the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC)–World Health Organization (WHO) Clinical Characterisation Protocol (CCP) and admitted to 1,609 hospitals in 54 countries with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection from February 15, 2020 to February 1, 2021 were included in the study. Data were collected and analysed for the duration of a patient’s admission. Incidence, staging, and timing of AKI were evaluated using a traditional and eKDIGO definition, which incorporated a commensurate decrease in sCr. Patients within eKDIGO diagnosed with AKI by a decrease in sCr were labelled as deKDIGO. Clinical characteristics and outcomes—intensive care unit (ICU) admission, invasive mechanical ventilation, and in-hospital death—were compared for all 3 groups of patients. The relationship between eKDIGO AKI and in-hospital death was assessed using survival curves and logistic regression, adjusting for disease severity and AKI susceptibility. A total of 75,670 patients were included in the final analysis cohort. Median length of admission was 12 days (interquartile range [IQR] 7, 20). There were twice as many patients with AKI identified by eKDIGO than KDIGO (31.7% versus 16.8%). Those in the eKDIGO group had a greater proportion of stage 1 AKI (58% versus 36% in KDIGO patients). Peak AKI occurred early in the admission more frequently among eKDIGO than KDIGO patients. Compared to those without AKI, patients in the eKDIGO group had worse renal function on admission, more in-hospital complications, higher rates of ICU admission (54% versus 23%) invasive ventilation (45% versus 15%), and increased mortality (38% versus 19%). Patients in the eKDIGO group had a higher risk of in-hospital death than those without AKI (adjusted odds ratio: 1.78, 95% confidence interval: 1.71 to 1.80, p-value < 0.001). Mortality and rate of ICU admission were lower among deKDIGO than KDIGO patients (25% versus 50% death and 35% versus 70% ICU admission) but significantly higher when compared to patients with no AKI (25% versus 19% death and 35% versus 23% ICU admission) (all p-values <5 × 10−5). Limitations include ad hoc sCr sampling, exclusion of patients with less than two sCr measurements, and limited availability of sCr measurements prior to initiation of acute dialysis.

Conclusions
An extended KDIGO definition of AKI resulted in a significantly higher detection rate in this population. These additional cases of AKI occurred early in the hospital admission and were associated with worse outcomes compared to patients without AKI.
Original languageEnglish
Article numbere1003969
Number of pages21
JournalPLoS Medicine
Volume19
Issue number4
DOIs
Publication statusPublished - 20 Apr 2022

Bibliographical note

Funding:
In the UK this work was supported by grants from: the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), the NIHR Health Protection Research Unit in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford (NIHR award 200907), UK Foreign, Commonwealth and Development Office and Wellcome (215091/Z/18/Z), Bill & Melinda Gates Foundation (OPP1209135). Internationally this work has been supported by the CIHR Coronavirus Rapid Research Funding Opportunity OV2170359, funding by the Health Research Board of Ireland [CTN-2014-12]; the Rapid European COVID-19 Emergency Response research (RECOVER) [H2020 project 101003589] and European Clinical Research Alliance on Infectious Diseases (ECRAID) [965313], the Research Council of Norway grant no 312780, and a philanthropic donation from Vivaldi Invest A/S owned by Jon Stephenson von Tetzchner; Innovative Medicines Initiative Joint Undertaking under Grant Agreement No. 115523 COMBACTE, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007- 2013) and EFPIA companies, in-kind contribution; is sponsored by INSERM and funded by the REACTing (REsearch & ACtion emergING infectious diseases) consortium and by a grant of the French Ministry of Health (PHRC n°20-0424); Stiftungsfonds zur Förderung der Bekämpfung der Tuberkulose und anderer Lungenkrankheiten of the City of Vienna, Project Number: APCOV22BGM; Italian Ministry of Health “Fondi Ricerca corrente–L1P6” to IRCCS Ospedale Sacro Cuore–Don Calabria; grants from Instituto de Salud Carlos III, Ministerio de Ciencia, Spain; Brazil, National Council for Scientific and Technological Development Scholarship number 303953/2018-7. MW declared funding from the University of Queensland’s Research and Training Scholarship. SM, DF, KY and SS declared funding from Artificial Intelligence for Pandemics (A14PAN) at University of Queensland. SM & SS declared funding from The Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009). AN declared funding from The Health Research Board of Ireland. JL reports grants from European Commission RECOVER Grant Agreement No 101003589 and European Commission ECRAID-Base Grant Agreement 965313. JPC declared funding from US Center for Disease Control and Prevention Foundation (site PI, SCCM Discovery-PREP Covid-19 and influenza), Herrick Medical LLC (industry-sponsored RCT of iv tubing modification for air-in-line evacuation, ClinicalTrials.gov NCT04851782. SK declared funding from Wellcome (222410/Z/21/Z). MGS reports grants from National Institute of Health Research UK, Medical Research Council UK, Health Protection Research Unit in Emerging & Zoonotic Infections, University of Liverpool. LM declared funding from the University of Oxford’s COVID-19 Research Response Fund. SM declared funding from Canadian Institutes of Health Research. SS declared funding from the University of Queensland Strategic funding and University of Queensland Gender Equity Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All other authors declared no specific funding for this work.

Fingerprint

Dive into the research topics of 'Use of an extended KDIGO definition to diagnose acute kidney injury in patients with COVID-19: A multinational study using the ISARIC–WHO clinical characterisation protocol'. Together they form a unique fingerprint.

Cite this