Abstract
Accurate analysis of microscopy images is hindered by the presence of noise. This noise is usually signal-dependent and often additionally correlated along rows or columns of pixels. Current self- and unsupervised denoisers can address signal-dependent noise, but none can reliably remove noise that is also row- or column-correlated. Here, we present the first fully unsupervised deep learning-based denoiser capable of handling imaging noise that is row-correlated as well as signal-dependent. Our approach uses a Variational Autoencoder (VAE) with a specially designed autoregressive decoder. This decoder is capable of modeling row-correlated and signal-dependent noise but is incapable of independently modeling underlying clean signal. The VAE therefore produces latent variables containing only clean signal information, and these are mapped back into image space using a proposed second decoder network. Our method does not require a pre-trained noise model and can be trained from scratch using unpaired noisy data. We benchmark our approach on microscopy datatsets from a range of imaging modalities and sensor types, each with row- or column-correlated, signal-dependent noise, and show that it outperforms existing self- and unsupervised denoisers.
Original language | English |
---|---|
Title of host publication | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) |
Publisher | IEEE |
Publication status | Accepted/In press - 28 Oct 2024 |
Event | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) - JW Marriott Starpass, Tuscon, United States Duration: 28 Feb 2025 → 4 Mar 2025 https://wacv2025.thecvf.com/ |
Publication series
Name | IEEE Workshop on Applications of Computer Vision (WACV) |
---|---|
Publisher | IEEE |
ISSN (Print) | 1550-5790 |
ISSN (Electronic) | 2642-9381 |
Conference
Conference | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) |
---|---|
Abbreviated title | WACV 2025 |
Country/Territory | United States |
City | Tuscon |
Period | 28/02/25 → 4/03/25 |
Internet address |