Understanding human decision-making during production ramp-up using natural language processing

Melanie Zimmer, Ali Al-Yacoub, Pedro Ferreira, Niels Lohse

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ramping up a manufacturing system from being just assembled to full-volume production capacity is a time consuming and error-prone task. The full behaviour of a system is difficult to predict in advance and disruptions that need to be resolved until the required performance targets are reached occur often. Information about the experienced faults and issues might be recorded, but usually, no record of decisions concerning necessary physical and process adjustments are kept. Having these data could help to uncover significant insights into the ramp-up process that could reduce the effort needed to bring the system to its mandatory state. This paper proposes Natural Language Processing (NLP) to interpret human operator comments collected during ramp-up. Recurring patterns in their feedback could be used to gain a deeper understanding of the cause and effect relationship between the system state and the corrective action that an operator applied. A manual dispensing experiment was conducted where human assessments in form of unstructured free-form text were gathered. These data have been used as an input for initial NLP analysis and preliminary results using the NLTK library are presented. Outcomes show first insights into the topics participants considered and lead to valuable knowledge to learn from this experience for the future.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 17th International Conference on Industrial Informatics, INDIN 2019
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages337-342
Number of pages6
ISBN (Electronic)9781728129273
DOIs
Publication statusPublished - Jul 2019
Event17th IEEE International Conference on Industrial Informatics, INDIN 2019 - Helsinki-Espoo, Finland
Duration: 22 Jul 201925 Jul 2019

Publication series

NameIEEE International Conference on Industrial Informatics (INDIN)
Volume2019-July
ISSN (Print)1935-4576

Conference

Conference17th IEEE International Conference on Industrial Informatics, INDIN 2019
Country/TerritoryFinland
CityHelsinki-Espoo
Period22/07/1925/07/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Decision-Support System
  • Industry 4.0
  • Natural Language Processing
  • Production Ramp-up
  • Unstructured Data

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Understanding human decision-making during production ramp-up using natural language processing'. Together they form a unique fingerprint.

Cite this