Abstract
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep (∼20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Original language | English |
---|---|
Title of host publication | Photons Plus Ultrasound |
Subtitle of host publication | Imaging and Sensing 2017 |
Editors | Alexander A. Oraevsky, Lihong V. Wang |
Publisher | SPIE |
ISBN (Electronic) | 9781510605695 |
DOIs | |
Publication status | Published - 2017 |
Event | Photons Plus Ultrasound: Imaging and Sensing 2017 - San Francisco, United States Duration: 29 Jan 2017 → 1 Feb 2017 |
Publication series
Name | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
---|---|
Volume | 10064 |
ISSN (Print) | 1605-7422 |
Conference
Conference | Photons Plus Ultrasound: Imaging and Sensing 2017 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 29/01/17 → 1/02/17 |
Bibliographical note
Publisher Copyright:© 2017 SPIE.
Keywords
- Acousto-optic
- Bioluminescence imaging (BLI)
- Small animal imaging
- Tissue phantom
- Ultrasound (US)
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Biomaterials
- Radiology Nuclear Medicine and imaging