Transverse cardiac slicing and optical imaging for analysis of transmural gradients in membrane potential and Ca2+ transients in murine heart

Q. Wen, K. Gandhi, Rebecca A. Capel, G. Hao, C. O'shea, G. Neagu, S. Pearcey, D. Pavlovic, Derek A. Terrar, J. Wu, G. Faggian, Patrizia Camelliti, M. Lei

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
97 Downloads (Pure)

Abstract

Transmural and regional gradients in membrane potential and Ca2+ transient in the murine heart are largely unexplored. Here, we developed and validated a robust approach which combines transverse ultra‐thin cardiac slices and high resolution optical mapping to enable systematic analysis of transmural and regional gradients in transmembrane potential (Vm) and intracellular Ca2+ transient (CaT) across the entire murine ventricles. The voltage dye RH237 or Ca2+ dye Rhod‐2 AM were loaded through the coronary circulation using a Langendorff perfusion system. Short‐axis slices (300 μm thick) were prepared from the entire ventricles (from the apex to the base) by using a high‐precision vibratome. Action potentials (APs) and CaTs were recorded with optical mapping during steady‐state baseline and rapid pacing. Significant transmural gradients in Vm and CaT were observed in the left ventricle, with longer AP duration (APD50 and APD75) and CaT duration (CaTD50 and CaTD75) in the endocardium compared with that in the epicardium. No significant regional gradients were observed along the apico‐basal axis of the left ventricle. Interventricular gradients were detected with significantly shorter APD50, APD75 and CaTD50 in the right ventricle compared with left ventricle and ventricular septum. During rapid pacing, AP and CaT alternans were observed in most ventricular regions, with significantly greater incidence in the endocardium in comparison with epicardium. In conclusion, these observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT in murine ventricular tissue.
Original languageEnglish
JournalThe Journal of Physiology
Early online date26 Jul 2018
DOIs
Publication statusE-pub ahead of print - 26 Jul 2018

Keywords

  • Cardiac slices
  • Optical imaging
  • Murine heart
  • Electrophysiological heterogeneity

Fingerprint

Dive into the research topics of 'Transverse cardiac slicing and optical imaging for analysis of transmural gradients in membrane potential and Ca2+ transients in murine heart'. Together they form a unique fingerprint.

Cite this