Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents

Bruno Bertini*, Mario Collura, Jacopo De Nardis, Maurizio Fagotti

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

Original languageEnglish
Article number207201
JournalPhysical Review Letters
Volume117
Issue number20
DOIs
Publication statusPublished - 8 Nov 2016

Bibliographical note

Publisher Copyright:
© 2016 American Physical Society.

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents'. Together they form a unique fingerprint.

Cite this