Topological quantum matter in synthetic dimensions

Tomoki Ozawa, Hannah M. Price

Research output: Contribution to journalReview articlepeer-review

64 Citations (Scopus)
808 Downloads (Pure)

Abstract

In the field of quantum simulation of condensed matter phenomena by artificially engineering the Hamiltonian of an atomic, molecular or optical system, the concept of synthetic dimensions has recently emerged as a powerful way to emulate phenomena such as topological phases of matter, which are now of great interest across many areas of physics. The main idea of a synthetic dimension is to couple together suitable degrees of freedom, such as a set of internal atomic states, in order to mimic the motion of a particle along an extra spatial dimension. This approach provides a way to engineer lattice Hamiltonians and enables the realization of higher-dimensional topological models in platforms with lower dimensionality. We give an overview of the recent progress in studying topological matter in synthetic dimensions. After reviewing proposals and realizations in various set-ups, we discuss future prospects in many-body physics, applications and topological effects in three or more spatial dimensions.
Original languageEnglish
Pages (from-to)349-357
JournalNature Reviews Physics
Volume1
Issue number5
DOIs
Publication statusPublished - 1 Apr 2019

Fingerprint

Dive into the research topics of 'Topological quantum matter in synthetic dimensions'. Together they form a unique fingerprint.

Cite this