Tilings in vertex ordered graphs

Jozsef Balogh, Lina Li, Andrew Treglown

Research output: Contribution to journalArticlepeer-review

Abstract

Over recent years there has been much interest in both Turán and Ramsey properties of vertex ordered graphs. In this paper we initiate the study of embedding spanning structures into vertex ordered graphs. In particular, we introduce a general framework for approaching the problem of determining the minimum degree threshold for forcing a perfect H-tiling in an ordered graph. In the (unordered) graph setting, this problem was resolved by Kühn and Osthus [The minimum degree threshold for perfect graph packings, Combinatorica, 2009]. We use our general framework to resolve the perfect H-tiling problem for all ordered graphs H of interval chromatic number 2. Already in this restricted setting the class of extremal examples is richer than in the unordered graph problem. In the process of proving our results, novel approaches to both the regularity and absorbing methods are developed.
Original languageEnglish
Pages (from-to)171-201
JournalJournal of Combinatorial Theory. Series B
Volume155
Early online date3 Mar 2022
DOIs
Publication statusE-pub ahead of print - 3 Mar 2022

Fingerprint

Dive into the research topics of 'Tilings in vertex ordered graphs'. Together they form a unique fingerprint.

Cite this