TY - JOUR
T1 - Tie-2 is expressed on thyroid follicular cells, is increased in goiter, and is regulated by thryotropin through cyclic adenosine 3',5'-monophosphate
AU - Ramsden, James
AU - Cocks, Helen
AU - Shams, Munjiba
AU - Nijjar, S
AU - Watkinson, John
AU - Sheppard, Michael
AU - Ahmed, Asif
AU - Eggo, Margaret
PY - 2001/6/1
Y1 - 2001/6/1
N2 - Angiogenesis is coordinated with follicular cell growth in goitrogenesis. The angiopoietins, Ang-1 and Ang-2, are angiogenic growth factors acting through Tie-2, a tyrosine kinase receptor. We have examined the expression and regulation of the angiopoietins and Tie-2 in human and rat thyroids. In human goiters there was increased Tie-2 immunostaining, compared with that in normal thyroids, on both follicular and endothelial cells. In an induced goiter in rats, in situ hybridization showed increased expression of messenger ribonucleic acids (mRNAs) for Tie-2 and Ang-1 in follicular cells. As Tie-2 has previously been believed to be restricted to cells of endothelial lineage in adults, we examined its expression further in isolated follicular cells. Tie-2 and Ang-1 mRNA expression in human thyrocytes was confirmed by ribonuclease protection assay. Ang-2 mRNA was not detected in human cultures or rat thyroids. In both human follicular cell cultures and FRTL-5 cells, immunoblotting showed that Tie-2 expression was increased by TSH and agents that increased intracellular cAMP. In conclusion, we have demonstrated the expression of Tie-2 and Ang-1 in thyroid epithelial and endothelial cells, and have shown the regulation of Tie-2 by TSH and cAMP in follicular cells. Tie-2 expression is increased in goiter in both humans and rats, consistent with a role in goitrogenesis.
AB - Angiogenesis is coordinated with follicular cell growth in goitrogenesis. The angiopoietins, Ang-1 and Ang-2, are angiogenic growth factors acting through Tie-2, a tyrosine kinase receptor. We have examined the expression and regulation of the angiopoietins and Tie-2 in human and rat thyroids. In human goiters there was increased Tie-2 immunostaining, compared with that in normal thyroids, on both follicular and endothelial cells. In an induced goiter in rats, in situ hybridization showed increased expression of messenger ribonucleic acids (mRNAs) for Tie-2 and Ang-1 in follicular cells. As Tie-2 has previously been believed to be restricted to cells of endothelial lineage in adults, we examined its expression further in isolated follicular cells. Tie-2 and Ang-1 mRNA expression in human thyrocytes was confirmed by ribonuclease protection assay. Ang-2 mRNA was not detected in human cultures or rat thyroids. In both human follicular cell cultures and FRTL-5 cells, immunoblotting showed that Tie-2 expression was increased by TSH and agents that increased intracellular cAMP. In conclusion, we have demonstrated the expression of Tie-2 and Ang-1 in thyroid epithelial and endothelial cells, and have shown the regulation of Tie-2 by TSH and cAMP in follicular cells. Tie-2 expression is increased in goiter in both humans and rats, consistent with a role in goitrogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0034966917&partnerID=8YFLogxK
U2 - 10.1210/jc.86.6.2709
DO - 10.1210/jc.86.6.2709
M3 - Article
C2 - 11397875
SN - 1945-7197
VL - 86
SP - 2709
EP - 2716
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 6
ER -