Abstract
Motivation: Data Mining Prediction (DMP) is a novel approach to predicting protein functional class from sequence. DMP works even in the absence of a homologous protein of known function. We investigate the utility of different ways of representing protein sequence in DMP (residue frequencies, phylogeny, predicted structure) using the Escherichia coli genome as a model. Results: Using the different representations DMP learnt prediction rules that were more accurate than default at every level of function using every type of representation. The most effective way to represent sequence was using phylogeny (75% accuracy and 13% coverage of unassigned ORFs at the most general level of function: 69% accuracy and 7% coverage at the most detailed). We tested different methods for combining predictions from the different types of representation. These improved both the accuracy and coverage of predictions, e.g. 40% of all unassigned ORFs could be predicted at an estimated accuracy of 60% and 5% of unassigned ORFs could be predicted at an estimated accuracy of 86%. Availability: The rules and data are freely available. Warmr is free to academics. Contact: [email protected]
Original language | English |
---|---|
Pages (from-to) | 445-454 |
Number of pages | 10 |
Journal | Bioinformatics |
Volume | 17 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2001 |
Keywords
- bioinformatics, data mining, inductive logic programming, relational learning, scientific knowledge