Abstract
A 2014 study of the eclipsing binary star 1SWASPJ011351.29+314909.7 (J0113+31) reported an unexpectedly high effective temperature for the M-dwarf companion to the 0.95-M$_{\odot}$ primary star. The effective temperature inferred from the secondary eclipse depth was $\sim$600 K higher than the value predicted from stellar models. Such an anomalous result questions our understanding of low-mass stars and might indicate a significant uncertainty when inferring properties of exoplanets orbiting them. We seek to measure the effective temperature of the M-dwarf companion using the light curve of J0113+31 recently observed by the Transiting Exoplanet Survey Satellite (TESS). We use the pycheops modelling software to fit a combined transit and eclipse model to the TESS light curve. To calculate the secondary effective temperature, we compare the best-fit eclipse depth to the predicted eclipse depths from theoretical stellar models. We determined the effective temperature of the M dwarf to be ${\rm T}_{\rm eff,2}$ = 3208 $\pm$ 43 K, assuming $\log g_2$ = 5, [Fe/H] = $-0.4$ and no alpha-element enhancement. Varying these assumptions changes ${\rm T}_{\rm eff,2}$ by less than 100 K. These results do not support a large anomaly between observed and theoretical low-mass star temperatures.
Original language | English |
---|---|
Journal | MNRAS: Letters, |
Volume | 498 |
Issue number | 1 |
DOIs | |
Publication status | Published - 9 Jul 2020 |
Bibliographical note
5 pages, 3 figures, published in MNRASKeywords
- astro-ph.SR
- astro-ph.EP