The release of nitric oxide from S-nitrosothiols promotes angiogenesis.

Bahjat Al-Ani, Peter Hewett, Shahzada Ahmed, Melissa Cudmore, Takeshi Fujisawa, Shakil Ahmad, Adeeba Ahmed

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

BACKGROUND: Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. CONCLUSIONS/SIGNIFICANCE: Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.
Original languageEnglish
Pages (from-to)e25
JournalPLoS ONE
Volume1
DOIs
Publication statusPublished - 1 Jan 2006

Fingerprint

Dive into the research topics of 'The release of nitric oxide from S-nitrosothiols promotes angiogenesis.'. Together they form a unique fingerprint.

Cite this