Projects per year
Abstract
A k-uniform tight cycle is a k-graph with a cyclic ordering of its vertices such that its edges are precisely the sets of k consecutive vertices in that ordering. A k-uniform tight path is a k-graph obtained by deleting a vertex from a k-uniform tight cycle. We prove that the Ramsey number for the 4-uniform tight cycle on 4n vertices is (5+o(1))n. This is asymptotically tight. This result also implies that the Ramsey number for the 4-uniform tight path on n vertices is (5/4+o(1))n.
Original language | English |
---|---|
Journal | SIAM Journal on Discrete Mathematics |
DOIs | |
Publication status | Accepted/In press - 4 Sept 2024 |
Bibliographical note
Not yet published as of 17/09/2024Projects
- 1 Finished
-
Matchings and tilings in graphs
Engineering & Physical Science Research Council
1/03/21 → 29/02/24
Project: Research Councils