TY - UNPB
T1 - The quest for identifiability in human functional connectomes
AU - Amico, Enrico
AU - Goni, Joaquin
PY - 2017/7/7
Y1 - 2017/7/7
N2 - The evaluation of the individual 'fingerprint' of a human functional connectome (FC) is becoming a promising avenue for neuroscientific research, due to its enormous potential inherent to drawing single subject inferences from functional connectivity profiles. Here we show that the individual fingerprint of a human functional connectome can be maximized from a reconstruction procedure based on group-wise decomposition in a finite number of brain connectivity modes. We use data from the Human Connectome Project to demonstrate that the optimal reconstruction of the individual FCs through connectivity eigenmodes maximizes subject identifiability across resting-state and all seven tasks evaluated. The identifiability of the optimally reconstructed individual connectivity profiles increases both at the global and edgewise level, also when the reconstruction is imposed on additional functional data of the subjects. Furthermore, reconstructed FC data provide more robust associations with task-behavioral measurements. Finally, we extend this approach to also map the most task-sensitive functional connections. Results show that is possible to maximize individual fingerprinting in the functional connectivity domain regardless of the task, a crucial next step in the area of brain connectivity towards individualized connectomics.
AB - The evaluation of the individual 'fingerprint' of a human functional connectome (FC) is becoming a promising avenue for neuroscientific research, due to its enormous potential inherent to drawing single subject inferences from functional connectivity profiles. Here we show that the individual fingerprint of a human functional connectome can be maximized from a reconstruction procedure based on group-wise decomposition in a finite number of brain connectivity modes. We use data from the Human Connectome Project to demonstrate that the optimal reconstruction of the individual FCs through connectivity eigenmodes maximizes subject identifiability across resting-state and all seven tasks evaluated. The identifiability of the optimally reconstructed individual connectivity profiles increases both at the global and edgewise level, also when the reconstruction is imposed on additional functional data of the subjects. Furthermore, reconstructed FC data provide more robust associations with task-behavioral measurements. Finally, we extend this approach to also map the most task-sensitive functional connections. Results show that is possible to maximize individual fingerprinting in the functional connectivity domain regardless of the task, a crucial next step in the area of brain connectivity towards individualized connectomics.
KW - functional connectome
KW - individual fingerprint
KW - human brain
KW - brain networks
KW - brain connectivity
U2 - 10.48550/arXiv.1707.02365
DO - 10.48550/arXiv.1707.02365
M3 - Preprint
BT - The quest for identifiability in human functional connectomes
PB - arXiv
ER -