Abstract
Cooking emissions account for a significant proportion of the organic aerosol emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found a clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain at the end of extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form to inhibit reaction progress – effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films < 10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.
Original language | English |
---|---|
Pages (from-to) | 364-381 |
Number of pages | 18 |
Journal | Faraday Discussions |
Early online date | 7 Sep 2020 |
DOIs | |
Publication status | Published - 1 Mar 2021 |
Fingerprint
Dive into the research topics of 'The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy'. Together they form a unique fingerprint.Press / Media
-
Using Diamond’s X-ray beam, researchers have discovered pollution from cooking remains in the atmosphere for longer than previously thought.
10/12/20
1 item of Media coverage
Press/Media: Press / Media
-
Pollution from fat lingers in your kitchen, warn scientists
9/12/20
1 item of Media coverage
Press/Media: Press / Media
-
Pollution from cooking remains in atmosphere for longer - study
8/12/20
1 Media contribution
Press/Media: Press / Media
-
Cooking oil emissions polluting urban environments
22/10/20
1 Media contribution
Press/Media: Press / Media