The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs

Sara Cioccolo, Joseph D. Barritt, Naomi Pollock, Zoe Hall, Julia Babuta, Pooja Sridhar, Alicia Just, Nina Morgner, Tim Dafforn, Ian Gould, Bernadette Byrne*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Downloads (Pure)

Abstract

The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.
Original languageEnglish
Number of pages13
JournalRSC Chemical Biology
Early online date29 Jul 2024
DOIs
Publication statusE-pub ahead of print - 29 Jul 2024

Cite this