TY - UNPB
T1 - The hippocampus pre-orders movements for skilled action sequences
AU - Yewbrey, Rhys
AU - Kornysheva, Katja
PY - 2024/4/25
Y1 - 2024/4/25
N2 - Plasticity in the subcortical motor basal ganglia-thalamo-cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including an area traditionally associated with declarative memory - the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset collected after participants learnt to produce four finger sequences entirely from memory with high accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic and cerebellar regions, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings show that the hippocampus pre-orders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements. These findings challenge the traditional taxonomy of episodic and procedural memory and carries implications for the rehabilitation of individuals with neurodegenerative disorders.
AB - Plasticity in the subcortical motor basal ganglia-thalamo-cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including an area traditionally associated with declarative memory - the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset collected after participants learnt to produce four finger sequences entirely from memory with high accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic and cerebellar regions, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings show that the hippocampus pre-orders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements. These findings challenge the traditional taxonomy of episodic and procedural memory and carries implications for the rehabilitation of individuals with neurodegenerative disorders.
U2 - 10.1101/2024.04.24.590889
DO - 10.1101/2024.04.24.590889
M3 - Preprint
BT - The hippocampus pre-orders movements for skilled action sequences
PB - bioRxiv
ER -