Abstract
We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly-fading blue component (T ≈ 5500 K at 1.5 days) that quickly reddens; spectra later than ≳ 4.5 days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at ∼7900 Å at t ≲ 4.5 days. The colors, rapid evolution, and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light r-process nuclei with atomic mass number A ≲ 140. This indicates a sightline within θobs ≲ 45o of the orbital axis. Comparison to models suggests ∼0.03 M⊙ of blue ejecta, with a velocity of ∼0.3c. The required lanthanide fraction is ∼10-4, but this drops to <10-5 in the outermost ejecta. The large velocities point to a dynamical origin,rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of ≲12 km. This mass also supports the idea that neutron star mergers are a major contributor to r-process nucleosynthesis.
Original language | English |
---|---|
Article number | L18 |
Number of pages | 8 |
Journal | Astrophysical Journal Letters |
Volume | 848 |
Issue number | 2 |
DOIs | |
Publication status | Published - 16 Oct 2017 |
Keywords
- astro-ph.HE
- astro-ph.CO
- astro-ph.SR
- binaries: close
- gravitational waves
- nuclear reactions
- stars: neutron
- abundances
- nucleosynthesis