Abstract
Microfibrillated cellulose (MFC) is a bio-material produced by disintegrating cellulose fibres into fibrillar components. MFC could offer a sustainable solution to packaging needs since it can form an excellent barrier to oxygen. However, a comprehensive understanding of how MFC characteristics impact barrier properties of MFC films or coatings is required. This article critically reviews how the extent of separation of fibres into fibrils-and any resulting changes to the crystallinity and degree of polymerisation of cellulose-influences gas barrier properties of MFC films or coatings. Findings from publications investigating the barrier performance of MFC prepared through different processes intending to increase the effectiveness of fibrillation are evaluated and compared. The effects of processing conditions or chemical pre-treatments on barrier properties of MFC films or coatings are then discussed. A comparison of reported results showed that morphology and size polydispersity of the cellulose strongly influence the barrier properties of MFC. However, changing the MFC production process to decrease fibril diameter and polydispersity can result in changes to cellulose crystallinity; reduction in fibril length; introduction of bulky functional groups; or increased fibril surface charge: all of which could have a negative impact on the barrier properties of the final films or coatings.
Original language | English |
---|---|
Article number | 122085 |
Journal | Carbohydrate Polymers |
Volume | 337 |
Early online date | 10 Apr 2024 |
DOIs | |
Publication status | Published - 1 Aug 2024 |
Bibliographical note
Copyright © 2024 The AuthorsKeywords
- Cellulose
- Microfibrillated cellulose
- Packaging
- Barrier
- Fibrillation