TY - JOUR
T1 - Tbet or continued RORγt expression is not required for Th17-associated immunopathology
AU - Brucklacher-Waldert, Verena
AU - Ferreira, Cristina
AU - Innocentin, Silvia
AU - Kamdar, Shraddha
AU - Withers, David
AU - Kullberg, Marika C
AU - Veldhoen, Marc
N1 - Copyright © 2016 The Authors.
PY - 2016/6/15
Y1 - 2016/6/15
N2 - The discovery of Th17 cell plasticity, in which CD4+ IL-17-producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ+ ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17ACre- or Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-γ double-producing cells, but leads to a marked absence of Th1-like IFNγ+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17-producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre-mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ+ ex-Th17 cells. However, IL-17ACre-mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17ACre-mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity.
AB - The discovery of Th17 cell plasticity, in which CD4+ IL-17-producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ+ ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17ACre- or Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-γ double-producing cells, but leads to a marked absence of Th1-like IFNγ+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17-producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre-mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ+ ex-Th17 cells. However, IL-17ACre-mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17ACre-mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity.
KW - Journal Article
U2 - 10.4049/jimmunol.1600137
DO - 10.4049/jimmunol.1600137
M3 - Article
C2 - 27183623
SN - 0022-1767
VL - 196
SP - 4893
EP - 4904
JO - Journal of Immunology
JF - Journal of Immunology
IS - 12
ER -