Task-driven webpage saliency

Quanlong Zheng, Jianbo Jiao, Ying Cao*, Rynson W.H. Lau

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

In this paper, we present an end-to-end learning framework for predicting task-driven visual saliency on webpages. Given a webpage, we propose a convolutional neural network to predict where people look at it under different task conditions. Inspired by the observation that given a specific task, human attention is strongly correlated with certain semantic components on a webpage (e.g., images, buttons and input boxes), our network explicitly disentangles saliency prediction into two independent sub-tasks: task-specific attention shift prediction and task-free saliency prediction. The task-specific branch estimates task-driven attention shift over a webpage from its semantic components, while the task-free branch infers visual saliency induced by visual features of the webpage. The outputs of the two branches are combined to produce the final prediction. Such a task decomposition framework allows us to efficiently learn our model from a small-scale task-driven saliency dataset with sparse labels (captured under a single task condition). Experimental results show that our method outperforms the baselines and prior works, achieving state-of-the-art performance on a newly collected benchmark dataset for task-driven webpage saliency detection.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Yair Weiss, Martial Hebert
PublisherSpringer Verlag
Pages300-316
Number of pages17
ISBN (Print)9783030012632
DOIs
Publication statusPublished - 2018
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: 8 Sept 201814 Sept 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11218 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period8/09/1814/09/18

Bibliographical note

Publisher Copyright:
© 2018, Springer Nature Switzerland AG.

Keywords

  • Saliency detection
  • Task-specific saliency
  • Webpage analysis

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Task-driven webpage saliency'. Together they form a unique fingerprint.

Cite this