TY - JOUR
T1 - Targeting a surface cavity of alpha 1-antitrypsin to prevent conformational disease
AU - Parfrey, H
AU - Mahadeva, R
AU - Ravenhill, NA
AU - Zhou, A
AU - Dafforn, Timothy
AU - Foreman, RC
AU - Lomas, DA
PY - 2003/6/4
Y1 - 2003/6/4
N2 - Conformational diseases are caused by a structural rearrangement within a protein that results in aberrant intermolecular linkage and tissue deposition. This is typified by the polymers that form with the Z deficiency variant of alpha 1-antitrypsin (Glu-342 --> Lys). These polymers are retained within hepatocytes to form inclusions that are associated with hepatitis, cirrhosis, and hepatocellular carcinoma. We have assessed a surface hydrophobic cavity in alpha1-antitrypsin as a potential target for rational drug design in order to prevent polymer formation and the associated liver disease. The introduction of either Thr-114 --> Phe or Gly-117 --> Phe on strand 2 of beta-sheet A within this cavity significantly raised the melting temperature and retarded polymer formation. Conversely, Leu-100 --> Phe on helix D accelerated polymer formation, but this effect was abrogated by the addition of Thr-114 --> Phe. None of these mutations affected the inhibitory activity of alpha 1-antitrypsin. The importance of these observations was underscored by the finding that the Thr-114 --> Phe mutation reduced polymer formation and increased the secretion of Z alpha 1-antitrypsin from a Xenopus oocyte expression system. Moreover cysteine mutants within the hydrophobic pocket were able to bind a range of fluorophores illustrating the accessibility of the cavity to external agents. These results demonstrate the importance of this cavity as a site for drug design to ameliorate polymerization and prevent the associated conformational disease.
AB - Conformational diseases are caused by a structural rearrangement within a protein that results in aberrant intermolecular linkage and tissue deposition. This is typified by the polymers that form with the Z deficiency variant of alpha 1-antitrypsin (Glu-342 --> Lys). These polymers are retained within hepatocytes to form inclusions that are associated with hepatitis, cirrhosis, and hepatocellular carcinoma. We have assessed a surface hydrophobic cavity in alpha1-antitrypsin as a potential target for rational drug design in order to prevent polymer formation and the associated liver disease. The introduction of either Thr-114 --> Phe or Gly-117 --> Phe on strand 2 of beta-sheet A within this cavity significantly raised the melting temperature and retarded polymer formation. Conversely, Leu-100 --> Phe on helix D accelerated polymer formation, but this effect was abrogated by the addition of Thr-114 --> Phe. None of these mutations affected the inhibitory activity of alpha 1-antitrypsin. The importance of these observations was underscored by the finding that the Thr-114 --> Phe mutation reduced polymer formation and increased the secretion of Z alpha 1-antitrypsin from a Xenopus oocyte expression system. Moreover cysteine mutants within the hydrophobic pocket were able to bind a range of fluorophores illustrating the accessibility of the cavity to external agents. These results demonstrate the importance of this cavity as a site for drug design to ameliorate polymerization and prevent the associated conformational disease.
UR - http://www.scopus.com/inward/record.url?scp=0042858320&partnerID=8YFLogxK
U2 - 10.1074/jbc.M302646200
DO - 10.1074/jbc.M302646200
M3 - Article
C2 - 12807889
SN - 1083-351X
VL - 278
SP - 33060
EP - 33066
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 35
ER -