TAPAS-1, a novel microdomaln within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid

GS Baillie, E Huston, G Scotland, Matthew Hodgkin, I Gall, AH Peden, C MacKenzie, ES Houslay, R Currie, Trevor Pettitt, AR Walmsley, Michael Wakelam, J Warwicker, MD Houslay

Research output: Contribution to journalArticle

124 Citations (Scopus)

Abstract

Here we identify an 11-residue helical module in the unique N-terminal region of the cyclic AMP-specific phosphodiesterase PDE4A1 that determines association with phospholipid bilayers and shows a profound selectivity for interaction with phosphatidic acid (PA). This module contains a core bilayer insertion unit that is formed by two tryptophan residues, Trp(19) and Trp(20), whose orientation is optimized for bilayer insertion by the Leu(16):Val(17) pairing. Ca2+, at submicromolar levels, interacts with Asp(21) in this module and serves to gate bilayer insertion, which is completed within 10 ms. Selectivity for interaction with PA is suggested to be achieved primarily through the formation of a charge network of the form (Asp(21-):Ca2+:PA(2-):Lys(24+)) with overall neutrality at the bilayer surface. This novel phospholipid-binding domain, which we call TAPAS-1 (tryptophan anchoring phosphatidic acid selective-binding domain 1), is here identified as being responsible for membrane association of the PDE4A1 cAMP-specific phosphodiesterase. TAPAS-1 may not only serve as a paradigm for other PA-binding domains but also aid in detecting related phospholipid-binding domains and in generating simple chimeras for conferring membrane association and intracellular targeting on defined proteins.
Original languageEnglish
Pages (from-to)28298-28309
Number of pages12
JournalJournal of Biological Chemistry
Volume277
Issue number31
DOIs
Publication statusPublished - 1 Aug 2002

Fingerprint

Dive into the research topics of 'TAPAS-1, a novel microdomaln within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid'. Together they form a unique fingerprint.

Cite this