Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination

Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M Summers, Daniel Rueckert

Research output: Contribution to journalArticlepeer-review

26 Downloads (Pure)

Abstract

Purpose

To systematically investigate the influence of various data consistency layers and regularization networks with respect to variations in the training and test data domain, for sensitivity-encoded accelerated parallel MR image reconstruction.


Theory and Methods

Magnetic resonance (MR) image reconstruction is formulated as a learned unrolled optimization scheme with a down-up network as regularization and varying data consistency layers. The proposed networks are compared to other state-of-the-art approaches on the publicly available fastMRI knee and neuro dataset and tested for stability across different training configurations regarding anatomy and number of training samples.


Results

Data consistency layers and expressive regularization networks, such as the proposed down-up networks, form the cornerstone for robust MR image reconstruction. Physics-based reconstruction networks outperform post-processing methods substantially for R = 4 in all cases and for R = 8 when the training and test data are aligned. At R = 8, aligning training and test data is more important than architectural choices.


Conclusion

In this work, we study how dataset sizes affect single-anatomy and cross-anatomy training of neural networks for MRI reconstruction. The study provides insights into the robustness, properties, and acceleration limits of state-of-the-art networks, and our proposed down-up networks. These key insights provide essential aspects to successfully translate learning-based MRI reconstruction to clinical practice, where we are confronted with limited datasets and various imaged anatomies.

Original languageEnglish
Pages (from-to)1859-1872
JournalMagnetic Resonance in Medicine
Volume86
Issue number4
Early online date10 Jun 2021
DOIs
Publication statusPublished - Oct 2021

Keywords

  • Acceleration
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Neural Networks, Computer
  • Neurology

Fingerprint

Dive into the research topics of 'Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination'. Together they form a unique fingerprint.

Cite this