Subcycle scanning near-field terahertz microscopy reaching atomic resolution

J. Hayes*, T. Siday, F. Schiegl, F. Sandner, P. Menden, V. Bergbauer, M. Zizlsperger, S. Nerreter, S. Lingl, J. Repp, J. Wilhelm, M. A. Huber, Y. A. Gerasimenko, R. Huber

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Optical microscopy at ultimate spatio-temporal scales is the key to connecting nanoscopic elementary dynamics with macroscopic functionalities of condensed matter. We discover a qualitatively new nonlinear contrast mechanism in near-field light-matter interaction, which we exploit to promote all-optical microscopy to combined subcycle and atomic-scale resolution. This way we trace the atomically confined quantum flow of electrons faster than a cycle of light.

Original languageEnglish
Title of host publication2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
PublisherIEEE Computer Society Press
Number of pages2
ISBN (Electronic)9798350370324
ISBN (Print)9798350370331 (PoD)
DOIs
Publication statusPublished - 7 Oct 2024
Event49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 - Perth, Australia
Duration: 1 Sept 20246 Sept 2024

Publication series

NameInternational Conference on Infrared, Millimeter, and Terahertz Waves
PublisherIEEE
ISSN (Print)2162-2027
ISSN (Electronic)2162-2035

Conference

Conference49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024
Country/TerritoryAustralia
CityPerth
Period1/09/246/09/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Keywords

  • atomic resolution
  • nanoscopy
  • near-field microscopy
  • subcycle
  • terahertz
  • tunneling-current transients
  • ultrafast

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Subcycle scanning near-field terahertz microscopy reaching atomic resolution'. Together they form a unique fingerprint.

Cite this