Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition

Shadi Al Khatiab, Timothy Button, John Abell

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

MgO thin films were deposited on Hastelloy C276 (HC) and 310 austenitic stainless steel by the spray pyrolysis technique, using magnesium nitrate and magnesium acetate as precursors. Thermogravimetrical analysis of the decomposition of the precursors was used to provide a guideline temperature for the thin film deposition. It was suggested that an amorphous MgO thin film was deposited on both 310-stainless steel and Hastelloy C-276 when using low concentration of the magnesium nitrate precursor. Higher concentrations were needed to obtain (200) oriented MgO films on C276. However, 310-stainless steel was found to not be a suitable substrate for MgO thin film deposition due to surface instability. A (200) oriented MgO thin film was grown on Hastelloy C276 using a magnesium acetate precursor at a much lower concentration compared to the nitrate precursor. The characterization of the thin films was done using scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction 2 theta-scans, rocking curves (omega-scans), and pole figure measurements. MgO was found to have a very weak in-plane texture.
Original languageEnglish
Pages (from-to)095001
Number of pages1
JournalSuperconductor Science & Technology
Volume23
Issue number9
DOIs
Publication statusPublished - 1 Sept 2010

Fingerprint

Dive into the research topics of 'Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition'. Together they form a unique fingerprint.

Cite this