Abstract
We discuss the static and dynamic magnetic properties of cold quantum gas systems. In particular, we investigate and analyze the ground state properties and dynamics of F = 2 spinor Bose-Einstein condensates of 87Rb. The rich physics of these systems is governed by an interplay between mean-field-driven spin dynamics and hyperfine-changing losses in addition to interactions with atoms in the thermal cloud. We find conversion rates on the order of 10-12 cm3 s-1 for spin-changing collisions within the F = 2 manifold and spin-dependent loss rates on the order of 10-13 cm3 s-1 for hyperfine-changing collisions. Our data leads to the conclusion that the F = 2 ground state of 87Rb is polar, while we measure the F = 1 ground state to be ferromagnetic. As remarkable features in the spin dynamics we observe spinor oscillations and a delayed formation of new mF-condensate components.
Original language | English |
---|---|
Pages (from-to) | 1252-1258 |
Number of pages | 7 |
Journal | Laser Physics |
Volume | 14 |
Issue number | 9 |
Publication status | Published - Sept 2004 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Instrumentation
- Condensed Matter Physics
- Industrial and Manufacturing Engineering