Abstract
Conversion of CO2 into useful chemical feedstocks or fuels using solar energy is a promising technology to tackle both climate change and energy shortage challenges. Here, NiCo alloys derived from AlMg hydrotalcite are introduced for photothermal synergetic CO2 conversion with CH4 with an ultrahigh light-to-fuel efficiency of 33.8% and a low carbon deposition rate of 0.011 gc g−1cat h−1. The ultrahigh efficiency is attributed to the high solar absorptance of NiCo alloys, unique synergistic catalysis of NiCo active sites, and the photo-enhanced reactant activation. Inhibition of carbon formation lies in concurrent reduced energy barriers of CH* oxidation to CHO* and increased energy barriers of CH* dissociation to C*, enabled by the unique synergistic catalysis of NiCo alloys. Direct light illumination results in an obvious decrease of the apparent activation energy of CO2 conversion with CH4, making light-driven CO2 conversion superior to conventional thermal-driven techniques. Herein, a new platform for achieving efficient solar-driven CO2 conversion with ultrahigh light-to-fuel efficiency based on NiCo alloy catalyst is provided and the way for sclable deployment of photothermal CO2-to-fuel techniques is paved.
Original language | English |
---|---|
Article number | 2100185 |
Number of pages | 11 |
Journal | Solar RRL |
Volume | 5 |
Issue number | 8 |
Early online date | 20 May 2021 |
DOIs | |
Publication status | Published - Aug 2021 |
Bibliographical note
Funding Information:This work was financially supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (no. 51888103) and the Basic Research Program of Frontier Leading Technologies in Jiangsu Province (BK20202008).
Publisher Copyright:
© 2021 Wiley-VCH GmbH.
Keywords
- CO reduction
- dry reforming of methane
- NiCo alloy
- solar fuels
- synergistic catalysis
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering