TY - JOUR
T1 - Sodium Ion Diffusion and Voltage Trends in Phosphates Na4M3(PO4)(2)P2O7 (M = Fe, Mn, Co, Ni) for Possible High-Rate Cathodes
AU - Wood, Stephen M.
AU - Eames, Chris
AU - Kendrick, Emma
AU - Islam, M. Saiful
PY - 2015/6/17
Y1 - 2015/6/17
N2 - Polyanionic phosphates have the potential to act as low-cost cathodes and stable framework materials for Na ion batteries. The mixed phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, Co, Ni) are a fascinating new class of materials recently reported to be attractive Na ion cathodes which display low-volume changes upon cycling, indicative of long-lifetime operation. Key issues surrounding intrinsic defects, Na ion migration mechanisms, and voltage trends have been investigated through a combination of atomistic energy minimization, molecular dynamics (MD), and density functional theory simulations. For all compositions, the most energetically favorable defect is calculated to be the Na/M antisite pair. MD simulations suggest Na+ diffusion extends across a 3D network of migration pathways with an activation barrier of 0.20–0.24 eV, and diffusion coefficients (DNa) of 10–10–10–11 cm2 s–1 at 325 K, suggesting good rate capability. The voltage trends indicate that doping the Fe-based cathode with Ni can significantly increase the voltage, and hence the energy density.
AB - Polyanionic phosphates have the potential to act as low-cost cathodes and stable framework materials for Na ion batteries. The mixed phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, Co, Ni) are a fascinating new class of materials recently reported to be attractive Na ion cathodes which display low-volume changes upon cycling, indicative of long-lifetime operation. Key issues surrounding intrinsic defects, Na ion migration mechanisms, and voltage trends have been investigated through a combination of atomistic energy minimization, molecular dynamics (MD), and density functional theory simulations. For all compositions, the most energetically favorable defect is calculated to be the Na/M antisite pair. MD simulations suggest Na+ diffusion extends across a 3D network of migration pathways with an activation barrier of 0.20–0.24 eV, and diffusion coefficients (DNa) of 10–10–10–11 cm2 s–1 at 325 K, suggesting good rate capability. The voltage trends indicate that doping the Fe-based cathode with Ni can significantly increase the voltage, and hence the energy density.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000358337700019&KeyUID=WOS:000358337700019
U2 - 10.1021/acs.jpcc.5b04648
DO - 10.1021/acs.jpcc.5b04648
M3 - Article
SN - 1932-7447
VL - 119
SP - 15935
EP - 15941
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 28
ER -