Projects per year
Abstract
Transport of trace metals by natural organic matter (NOM) is potentially an important vector for trace metal incorporation in secondary cave precipitates [speleothems], yet little is known about the size distribution, speciation and metal binding properties of NOM in cave dripwaters. A hyperalkaline cave environment (ca. pH 11) was selected to provide information on colloid-metal interactions in cave waters, and to address the lack of high-pH data in natural systems in general. Colloidal (1 nm-1 mu m) NOM in hyperalkaline cave dripwater from Poole's Cavern, UK, was characterised by flow field-flow fractionation (FlFFF) coupled to UV and fluorescence detectors and transmission electron microscopy (TEM) coupled to X-ray energy-dispersive spectroscopy (X-EDS); trace-metal lability was examined by diffusive gradients in thin films (DGT). Colloidal aggregates and small particulates (>1 mu m) imaged by TEM were morphologically heterogeneous with qualitative elemental compositions (X-EDS spectra; n = 41) consistent with NOM aggregates containing aluminosilicates, and iron and titanium oxides. Globular organic colloids, with diameters between ca. 1 and 10 nm were the most numerous colloidal class and exhibited high UV-absorbance (254 nm) and fluorescence intensity (320:400 nm excitation: emission) in optical regions characteristic of humic-like compounds. Metal binding with humic substances was modelled using the WHAM 6.1 (model VI) and visual MINTEQ 3.0 (NICA-Donnan) speciation codes. At pH 11, both models predicted dominant humic binding of Cu (ca. 100%) and minimal binding of Ni and Co (ca. Sr > V > Cu > Ni > Co), compared to the transition metals. Integrated over the entire experiment, the DGT-available proportion of transition metals (Ni > Cu & V >> Co) differed greatly from the expected hierarchy from WHAM and MINTEQ, indicating unusually strong complexation of Co. Total metal concentrations of Cu, Ni, and Co in raw and filtered PE1 dripwater samples (n = 53) were well correlated (Cu vs. Ni, R-2 = 0.8; Cu vs. Co, R-2 = 0.5) and were strongly reduced (> ca. 50%) by filtration at ca. 100 and 1 nm, indicating a common colloidal association. Our results demonstrate that soil-derived colloids reach speleothems, despite transport through a karst zone with potential for adsorption, and that NOM is a dominant complexant of trace metals in high pH speleothem-forming groundwaters. (C) 2011 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 7533-7551 |
Number of pages | 19 |
Journal | Geochimica et Cosmochimica Acta |
Volume | 75 |
Issue number | 23 |
Early online date | 24 Sept 2011 |
DOIs | |
Publication status | Published - 1 Dec 2011 |
Fingerprint
Dive into the research topics of 'Size, speciation and lability of NOM-metal complexes in hyperalkaline cave dripwater'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Elemental signals in karst: from soil to speleothem
Fairchild, I. & Lead, J.
Natural Environment Research Council
1/04/09 → 31/12/10
Project: Research Councils