Abstract
Conjugated organic photoredox catalysts (OPCs) can promote a wide range of chemical transformations. It is challenging to predict the catalytic activities of OPCs from first principles, either by expert knowledge or by using a priori calculations, as catalyst activity depends on a complex range of interrelated properties. Organic photocatalysts and other catalyst systems have often been discovered by a mixture of design and trial and error. Here we report a two-step data-driven approach to the targeted synthesis of OPCs and the subsequent reaction optimization for metallophotocatalysis, demonstrated for decarboxylative sp3–sp2 cross-coupling of amino acids with aryl halides. Our approach uses a Bayesian optimization strategy coupled with encoding of key physical properties using molecular descriptors to identify promising OPCs from a virtual library of 560 candidate molecules. This led to OPC formulations that are competitive with iridium catalysts by exploring just 2.4% of the available catalyst formulation space (107 of 4,500 possible reaction conditions).
Original language | English |
---|---|
Pages (from-to) | 1286-1294 |
Number of pages | 9 |
Journal | Nature Chemistry |
Volume | 16 |
Issue number | 8 |
Early online date | 11 Jun 2024 |
DOIs | |
Publication status | Published - 1 Aug 2024 |