S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys

Research output: Contribution to journalReview article

324 Citations (Scopus)

Abstract

Stainless steel, Co-Cr and Ni-Cr alloys have played an important role in many industrial sectors to combat environmental degradation. However, low hardness and poor wear properties have impeded their tribological and tribochemical applications. Conventional thermochemical treatments can be used to significantly harden these passive alloys but at the expense of their corrosion resistance due to precipitation induced depletion of Cr in the matrix. Research in 1980s led to the discovery of a new expanded austenite phase, i.e. so called S-phase with combined improvement in wear and corrosion resistance. Recent research has revealed that S-phase can be formed not only in stainless steels but also in Co-Cr alloys and Ni-Cr alloys. It is the purpose of this paper to critically review the S-phase surface engineering of stainless steels, Co-Cr alloys and Ni-Cr alloys. Particular attention will be paid to the structure, formation conditions, supersaturation, hardening mechanisms and metastability of S-phase. Based on the discussion of the chemical, mechanical, tribological and tribochemical properties of S-phase, the importance of the S-phase surface engineering technology is demonstrated by examples. Finally, future directions towards more stable and thicker S-phase layers will be discussed.
Original languageEnglish
Pages (from-to)65-98
Number of pages34
JournalInternational Materials Reviews
Volume55
Issue number2
DOIs
Publication statusPublished - 1 Mar 2010

Keywords

  • Co-Cr alloys
  • Stainless steel
  • S-phase
  • Ni-Cr alloys
  • Review
  • Expanded austenite
  • Surface engineering

Fingerprint

Dive into the research topics of 'S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys'. Together they form a unique fingerprint.

Cite this