Roadmap on magnetic nanoparticles in nanomedicine

Kai Wu*, Jian-Ping Wang*, Niranjan A Natekar, Stefano Ciannella, Cristina González-Fernández, Jenifer Gomez-Pastora, Yuping Bao, Jinming Liu, Shuang Liang, Xian Wu, Linh Nguyen T Tran, Karla Mercedes Paz González, Hyeon Choe, Jacob Strayer, Poornima Ramesh Iyer, Jeffrey Chalmers, Vinit Kumar Chugh, Bahareh Rezaei, Shahriar Mostufa, Zhi Wei TayChinmoy Saayujya, Quincy Huynh, Jacob Bryan, Renesmee Kuo, Elaine Yu, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly, Ravi L Hadimani, Ahmed A El-Gendy, Renata Saha, Thomas J Broomhall, Abigail L Wright, Michael Rotherham, Alicia J El Haj, Zhiyi Wang, Jiarong Liang, Ana Abad-Díaz-de-Cerio, Lucía Gandarias, Alicia G Gubieda, Ana García-Prieto, Mª Luisa Fdez-Gubieda

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

43 Downloads (Pure)

Abstract

Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored for in vivo applications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Original languageEnglish
Article number042003
Number of pages46
JournalNanotechnology
Volume36
Issue number4
Early online date5 Nov 2024
DOIs
Publication statusE-pub ahead of print - 5 Nov 2024

Keywords

  • hyperthermia
  • magnetic biosensing
  • magnetic imaging
  • biomedical application
  • tissue engineering
  • drug delivery
  • magnetic nanoparticle

Fingerprint

Dive into the research topics of 'Roadmap on magnetic nanoparticles in nanomedicine'. Together they form a unique fingerprint.

Cite this