Road map for clinicians to develop and evaluate AI predictive models to inform clinical decision-making

Nehal Hassan, Robert Slight, Graham Morgan, David W. Bates, Suzy Gallier, Elizabeth Sapey, Sarah Slight*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

24 Downloads (Pure)

Abstract

Background: Predictive models have been used in clinical care for decades. They can determine the risk of a patient developing a particular condition or complication and inform the shared decision-making process. Developing artificial intelligence (AI) predictive models for use in clinical practice is challenging; even if they have good predictive performance, this does not guarantee that they will be used or enhance decision-making. We describe nine stages of developing and evaluating a predictive AI model, recognising the challenges that clinicians might face at each stage and providing practical tips to help manage them.

Findings: The nine stages included clarifying the clinical question or outcome(s) of interest (output), identifying appropriate predictors (features selection), choosing relevant datasets, developing the AI predictive model, validating and testing the developed model, presenting and interpreting the model prediction(s), licensing and maintaining the AI predictive model and evaluating the impact of the AI predictive model. The introduction of an AI prediction model into clinical practice usually consists of multiple interacting components, including the accuracy of the model predictions, physician and patient understanding and use of these probabilities, expected effectiveness of subsequent actions or interventions and adherence to these. Much of the difference in whether benefits are realised relates to whether the predictions are given to clinicians in a timely way that enables them to take an appropriate action.

Conclusion: The downstream effects on processes and outcomes of AI prediction models vary widely, and it is essential to evaluate the use in clinical practice using an appropriate study design.

Original languageEnglish
Article numbere100784
Number of pages7
JournalBMJ Health and Care Informatics
Volume30
Issue number1
DOIs
Publication statusPublished - 9 Aug 2023

Bibliographical note

Publisher Copyright:
© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords

  • artificial intelligence
  • decision support systems, clinical
  • preventive medicine

ASJC Scopus subject areas

  • Computer Science Applications
  • Health Informatics
  • Health Information Management

Fingerprint

Dive into the research topics of 'Road map for clinicians to develop and evaluate AI predictive models to inform clinical decision-making'. Together they form a unique fingerprint.

Cite this