Abstract
This study used high-speed synchrotron X-ray tomography to image the growth of Al2Cu intermetallic compounds in 4D (3D plus time) during solidification of Al-45wt%Cu alloy. Two categories of growth patterns (basic units and dendrites) are identified. Basic units are elongated rods whose cross-section are L, U or hollow-rectangular shapes. The transition from L pattern to U and finally to hollow-rectangular shaped morphology is observed. Faceted dendritic patterns include equiaxed prism and columnar dendrites. Self-repeated layer-by-layer stacking of the basic units (such as L shaped particles) is proposed as a governing mechanism for the growth of Al2Cu faceted dendrites. The growth orientation and morphologies of these patterns are strongly influenced by solidification conditions (temperature gradients, cooling rates and external magnetic fields). Another finding is that when rotating Al-45wt%Cu during upwards directional solidification, under a transverse magnetic field of 0.5T, highly refined and well aligned Al2Cu intermetallic compounds are obtained, much finer than those without the imposition of the magnetic field. This is attributed to a rotational stirring flow that modulates and regulates the temperature and solute distribution. The developed experimental findings provide a physical understanding of the formation of faceted intermetallic compounds during solidification.
Original language | English |
---|---|
Article number | 117903 |
Number of pages | 15 |
Journal | Acta Materialia |
Volume | 231 |
Early online date | 30 Mar 2022 |
DOIs | |
Publication status | Published - 1 Jun 2022 |
Bibliographical note
Funding Information:Z.S. thanks the UK-EPSRC CDT Grant (No: EP/L016206/1) in Innovative Metal Processing for financial support. B.C. acknowledges the support from the Alan Turing Fellowship (2018-2021). We thank the Diamond Light Source for providing the beamtime (EE19216–1).
Keywords
- intermetallic
- crystal growth
- synchrotron x-ray tomography
- magnetic field-assisted solidification