Retinol modulates site-specific mobility of apo-cellular retinol-binding protein to promote ligand binding

T Mittag, L Franzoni, D Cavazzini, B Schaffhausen, GL Rossi, Ulrich Gunther

    Research output: Contribution to journalArticle

    17 Citations (Scopus)

    Abstract

    A fundamental question in protein science is how the inherent dynamics of a protein influence its function. If this function involves interactions with a ligand, the protein-ligand encounter has the potential to modulate the protein dynamics. This study reveals how site-specific mobility can be modulated by the ligand to facilitate high affinity binding. We have investigated the mechanism of retinol uptake by the cellular retinol-binding protein type I (CRBP) using line shape analysis of NMR signals. The highly similar structures of apo- and holo-CRBP exhibit closed conformations that seemingly offer no access to ligand, yet the protein binds retinol rapidly and with high affinity. NMR line shape analysis reveals how protein dynamics resolve this apparent paradox. An initial nonspecific encounter with the ligand induces the formation of long-lived conformers in the portal region of CRBP suggesting a mechanism how retinol accesses the cavity.
    Original languageEnglish
    Pages (from-to)9844-9848
    Number of pages5
    JournalJournal of the American Chemical Society
    Volume128
    DOIs
    Publication statusPublished - 2 Aug 2006

    Fingerprint

    Dive into the research topics of 'Retinol modulates site-specific mobility of apo-cellular retinol-binding protein to promote ligand binding'. Together they form a unique fingerprint.

    Cite this