Resource management of enterprise cloud systems using layered queuing and historical performance models

David A. Bacigalupo, Jano Van Hemert, Asif Usmani, Donna N. Dillenberger, Gary B. Wills, Stephen A. Jarvis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Citations (Scopus)

Abstract

The automatic allocation of enterprise workload to resources can be enhanced by being able to make 'whatif' response time predictions, whilst different allocations are being considered. It is important to quantitatively compare the effectiveness of different prediction techniques for use in cloud infrastructures. To help make the comparison of relevance to a wide range of possible cloud environments it is useful to consider the following. 1.) urgent cloud customers such as the emergency services that can demand cloud resources at short notice (e.g. for our FireGrid emergency response software). 2.) dynamic enterprise systems, that must rapidly adapt to frequent changes in workload, system configuration and/or available cloud servers. 3.) The use of the predictions in a coordinated manner by both the cloud infrastructure and cloud customer management systems. 4.) A broad range of criteria for evaluating each technique. However, there have been no previous comparisons meeting these requirements. This paper, meeting the above requirements, quantitatively compares the layered queuing and ("HYDRA") historical techniques - including our initial thoughts on how they could be combined. Supporting results and experiments include the following: i.) defining, investigating and hence providing guidelines on the use of a historical and layered queuing model; ii.) using these guidelines showing that both techniques can make low overhead and typically over 70% accurate predictions, for new server architectures for which only a small number of benchmarks have been run; and iii.) defining and investigating tuning a prediction-based cloud workload and resource management algorithm.

Original languageEnglish
Title of host publicationProceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010
DOIs
Publication statusPublished - 2010
Event2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010 - Atlanta, GA, United States
Duration: 19 Apr 201023 Apr 2010

Publication series

NameProceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010

Conference

Conference2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010
Country/TerritoryUnited States
CityAtlanta, GA
Period19/04/1023/04/10

Keywords

  • Cloud
  • FireGrid
  • HYDRA historical prediction
  • Layered queuing
  • Performance modelling

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Resource management of enterprise cloud systems using layered queuing and historical performance models'. Together they form a unique fingerprint.

Cite this