Resilient degree sequences with respect to hamilton cycles and matchings in random graphs

Padraig Condon, Alberto Espuny Díaz, Daniela Kühn, Deryk Osthus, Jaehoon Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Pósa’s theorem states that any graph G whose degree sequence d1 ≤ · · · ≤ dn satisfies di ≥ i + 1 for all i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs G of random graphs, i.e. we prove a ‘resilience version’ of Pósa’s theorem: if pn ≥ C log n and the i-th vertex degree (ordered increasingly) of G ⊆ Gn,p is at least (i + o(n))p for all i < n/2, then G has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac’s theorem obtained by Lee and Sudakov. Chvátal’s theorem generalises Pósa’s theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chvátal’s theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,p which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.

Original languageEnglish
Article number#P4.54
JournalElectronic Journal of Combinatorics
Volume26
Issue number4
DOIs
Publication statusPublished - 2019

Bibliographical note

Funding Information:
Supported by the EPSRC, grant no. EP/N019504/1, and by the Royal Society and the Wolfson Foundation Supported by the European Research Council under the European Union?s Seventh Framework Programme (FP/2007?2013) / ERC Grant 306349. We are grateful to Ant?nio Gir?o for some helpful discussions which led us to simplify one of our proofs.

Funding Information:
∗Supported by the EPSRC, grant no. EP/N019504/1, and by the Royal Society and the Wolfson Foundation †Supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant 306349

Publisher Copyright:
©The authors.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Resilient degree sequences with respect to hamilton cycles and matchings in random graphs'. Together they form a unique fingerprint.

Cite this