TY - JOUR
T1 - Rescaling quality of life values from discrete choice experiments for use as QALYs : a cautionary tale
AU - Flynn, TN
AU - Louviere, JJ
AU - Marley, AA
AU - Coast, Joanna
AU - Peters, TJ
PY - 2008/10/22
Y1 - 2008/10/22
N2 - Background: Researchers are increasingly investigating the potential for ordinal tasks such as ranking and discrete choice experiments to estimate QALY health state values. However, the assumptions of random utility theory, which underpin the statistical models used to provide these estimates, have received insufficient attention. In particular, the assumptions made about the decisions between living states and the death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly anchored with respect to death (zero) in such circumstances.
Methods: Data from the Investigating Choice Experiments for the preferences of older people CAPability instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values. Bootstrapping was conducted to vary artificially the proportion of people who conformed to the conventional random utility model underpinning the analyses.
Results: Only 26% of respondents conformed unequivocally to the assumptions of conventional random
utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative
proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY
values, particularly for lower-valued states. As a result these values could be either positive (considered
to be better than death) or negative (considered to be worse than death).
Conclusion: Use of a statistical model such as conditional (multinomial) regression to anchor quality of life values from ordinal data to death is inappropriate in the presence of respondents who do not conform to the assumptions of conventional random utility theory. This is clearest when estimating values for that group of respondents observed in valuation samples who refuse to consider any living state to be worse than death: in such circumstances the model cannot be estimated. Only a valuation task requiring respondents to make choices in which both length and quality of life vary can produce estimates that properly reflect the preferences of all respondents.
AB - Background: Researchers are increasingly investigating the potential for ordinal tasks such as ranking and discrete choice experiments to estimate QALY health state values. However, the assumptions of random utility theory, which underpin the statistical models used to provide these estimates, have received insufficient attention. In particular, the assumptions made about the decisions between living states and the death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly anchored with respect to death (zero) in such circumstances.
Methods: Data from the Investigating Choice Experiments for the preferences of older people CAPability instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values. Bootstrapping was conducted to vary artificially the proportion of people who conformed to the conventional random utility model underpinning the analyses.
Results: Only 26% of respondents conformed unequivocally to the assumptions of conventional random
utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative
proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY
values, particularly for lower-valued states. As a result these values could be either positive (considered
to be better than death) or negative (considered to be worse than death).
Conclusion: Use of a statistical model such as conditional (multinomial) regression to anchor quality of life values from ordinal data to death is inappropriate in the presence of respondents who do not conform to the assumptions of conventional random utility theory. This is clearest when estimating values for that group of respondents observed in valuation samples who refuse to consider any living state to be worse than death: in such circumstances the model cannot be estimated. Only a valuation task requiring respondents to make choices in which both length and quality of life vary can produce estimates that properly reflect the preferences of all respondents.
U2 - 10.1186/1478-7954-6-6
DO - 10.1186/1478-7954-6-6
M3 - Article
C2 - 18945358
SN - 1478-7954
VL - 6
JO - Population Health Metrics
JF - Population Health Metrics
M1 - 6
ER -