Abstract
Whether chronic hypoxia causes angiogenesis in skeletal muscle is controversial. Male Wistar rats, 5-6 wk of age, were kept at constant 12% O-2 for 3 wk, and frozen sections of their postural soleus (SOL), phasic extensor digitorum longus (EDL), and tibialis anterior (TA) muscles were compared with those of normoxic controls. Capillary supply increased in SOL muscles [capillary-to-fiber ratio (C/F) = 2.55 +/- 0.09 hypoxia vs. 2.17 +/- 0.06 normoxia; capillary density (CD) = 942 +/- 14 hypoxia vs. 832 +/- 20 mm(-2) normoxia, P 0.04 hypoxia vs. 1.42 +/- 0.04 normoxia; CD = 876 +/- 52 hypoxia vs. 896 +/- 24 mm(-2) normoxia). The predominantly glycolytic cortex of TA muscles showed higher C/F after hypoxia (1.79 +/- 0.09 vs. 1.53 +/- 0.05 normoxia, P 128 mum(2)) oxidative fibers (90% type I) had a higher C/F (by 30%) and CD (by 25%), whereas there was no angiogenesis in the region with sparse (76%) and smaller-sized (2,200 +/- 85 mum(2)) type I fibers. Thus systemic hypoxia differentially induces angiogenesis between and within hindlimb skeletal muscles, with fiber size contributing either directly (via a metabolic stimulus) or indirectly (via a mechanical stimulus) to the process.
Original language | English |
---|---|
Pages (from-to) | H241-H252 |
Journal | AJP Heart and Circulatory Physiology |
Volume | 281 |
Issue number | 1 |
Publication status | Published - 1 Jul 2001 |
Keywords
- hypoxemia
- oxygen transport
- capillary growth
- rat
- histochemistry