Abstract
Regularity models have been used in dealing with noise-free multiobjective optimization problems. This paper studies the behavior of a regularity model in noisy environments and argues that it is very suitable for noisy multiobjective optimization. We propose to embed the regularity model in an existing
multiobjective evolutionary algorithm for tackling noises. The proposed algorithm works well in terms of both convergence and diversity. In our experimental studies, we have compared several state-of-the-art of algorithms with our proposed algorithm on benchmark problems with different levels of noises. The experimental results showed the effectiveness of the regularity model on noisy problems, but a degenerated performance on
some noisy-free problems.
multiobjective evolutionary algorithm for tackling noises. The proposed algorithm works well in terms of both convergence and diversity. In our experimental studies, we have compared several state-of-the-art of algorithms with our proposed algorithm on benchmark problems with different levels of noises. The experimental results showed the effectiveness of the regularity model on noisy problems, but a degenerated performance on
some noisy-free problems.
Original language | English |
---|---|
Number of pages | 13 |
Journal | IEEE Transactions on Cybernetics |
Issue number | 99 |
DOIs | |
Publication status | E-pub ahead of print - 3 Aug 2015 |